Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 645-648, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38845703

ABSTRACT

The cis- form of di-amino-dibenzo-cyclo-octane (DADBCO, C16H18N2) is of inter-est as a negative coefficient of thermal expansion (CTE) material. The crystal structure was determined through single-crystal X-ray diffraction at 100 K and is presented herein.

2.
ACS Appl Eng Mater ; 2(4): 818-828, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38737588

ABSTRACT

Producing soft magnetic alloys by additive manufacturing has the potential to overcome cracking and brittle fracture issues associated with conventional thermomechanical processing. Fe-Co alloys exhibit high magnetic saturation but low ductility that makes them difficult to process by commercial methods. Ni-Fe alloys have good ductility and high permeability in comparison to Fe-Co, but they suffer from low magnetic saturation. Functional grading between Fe-Co and Ni-Fe alloys through blown powder directed energy deposition can produce soft magnetic materials that combine and enhance properties beyond the strengths of the individual magnetic materials. This work focuses on the microstructure, crystal structure, and magnetic properties of functionally graded Fe49Co49V2/Ni80Fe16Mo4 coupons. The grading between the two materials is found to refine the microstructure, thereby improving the mechanical hardness without the use of a nonmagnetic element. Postbuild thermal treatments are found to recrystallize the microstructure and increase the grain size, leading to improved magnetic properties. Analysis of crystal structures provides an understanding of the solubility limits and phase equilibria between the BCC (Fe-Co) and FCC (Ni-Fe) structures. Success in functional grading of soft magnets may provide a pathway toward improving energy conversion efficiency through strategic combinations of high saturation and high strength materials.

3.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 1): 33-37, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36628363

ABSTRACT

Two novel LiCl·DMSO polymer structures were created by combining dry LiCl salt with dimethyl sulfoxide (DMSO), namely, catena-poly[[chlorido-lithium(I)]-µ-(dimethyl sulfoxide)-κ2 O:O-[chlorido-lithium(I)]-di-µ-(dimethyl sulfoxide)-κ4 O:O], [Li2Cl2(C2H6OS)3] n , and catena-poly[lithium(I)-µ-chlorido-µ-(dimethyl sulfoxide)-κ2 O:O], [LiCl(C2H6OS)] n . The initial synthesized phase had very small block-shaped crystals (<0.08 mm) with monoclinic symmetry and a 2 LiCl: 3 DMSO ratio. As the solution evaporated, a second phase formed with a plate-shaped crystal morphology. After about 20 minutes, large (>0.20 mm) octa-hedron-shaped crystals formed. The plate crystals and the octa-hedron crystals are the same tetra-gonal structure with a 1 LiCl: 1 DMSO ratio. These structures are reported and compared to other known LiCl·solvent compounds.

4.
ACS Appl Mater Interfaces ; 14(48): 54349-54358, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36399403

ABSTRACT

Several studies suggest that metal ordering within metal-organic frameworks (MOFs) is important for understanding how MOFs behave in relevant applications; however, these siting trends can be difficult to determine experimentally. To garner insight into the energetic driving forces that may lead to nonrandom ordering within heterometallic MOFs, we employ density functional theory (DFT) calculations on several bimetallic metal-organic crystals composed of Nd and Yb metal atoms. We also investigate the metal siting trends for a newly synthesized MOF. Our DFT-based energy of mixing results suggest that Nd will likely occupy sites with greater access to electronegative atoms and that local homometallic domains within a mixed-metal Nd-Yb system are favored. We also explore the use of less computationally extensive methods such as classical force fields and cluster expansion models to understand their feasibility for large system sizes. This study highlights the impact of metal ordering on the energetic stability of heterometallic MOFs and crystal structures.

5.
ACS Appl Mater Interfaces ; 14(8): 10566-10576, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35170304

ABSTRACT

A rapid and facile design strategy to create a highly complex optical tag with programmable, multimodal photoluminescent properties is described. This was achieved via intrinsic and DNA-fluorophore hidden signatures. As a first covert feature of the tag, an intricate novel heterometallic near-infrared (NIR)-emitting mesoporous metal-organic framework (MOF) was designed and synthesized. The material is constructed from two chemically distinct, homometallic hexanuclear clusters based on Nd and Yb. Uniquely, the Nd-based cluster is observed here for the first time in a MOF and consists of two staggered Nd µ3-oxo trimers. To generate controlled, multimodal, and tailorable emission with difficult to counterfeit features, the NIR-emissive MOF was post-synthetically modified via a fluorescent DNA oligo labeling design strategy. The surface attachment of several distinct fluorophores, including the simultaneous attachment of up to three distinct fluorescently labeled oligos was achieved, with excitation and emission properties across the visible spectrum (480-800 nm). The DNA inclusion as a secondary covert element in the tag was demonstrated via the detection of SYBR Gold dye association. Importantly, the approach implemented here serves as a rapid and tailorable way to encrypt distinct information in a facile and modular fashion and provides an innovative technology in the quest toward complex optical tags.

6.
ACS Appl Mater Interfaces ; 14(2): 3038-3047, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34995439

ABSTRACT

Optical anticounterfeiting tags utilize the photoluminescent properties of materials to encode unique patterns, enabling identification and validation of important items and assets. These tags must combine optical complexity with ease of production and authentication to both prevent counterfeiting and to remain practical for widespread use. Metal-organic frameworks (MOFs) based on polynuclear, rare earth clusters are ideal materials platforms for this purpose, combining fine control over structure and composition, with tunable, complex energy transfer mechanisms via both linker and metal components. Here we report the design and synthesis of a set of heterometallic MOFs based on combinations of Eu, Nd, and Yb with the tetratopic linker 1,3,6,8-tetrakis(4-carboxyphenyl)pyrene. The energetics of this linker facilitate the intentional concealment of the visible emissions from Eu while retaining the infrared emissions of Nd and Yb, creating an optical tag with multiple covert elements. Unique to the materials system reported herein, we document the occurrence of a previously not observed 11-metal cluster correlated with the presence of Yb in the MOFs, coexisting with a commonly encountered 9-metal cluster. We demonstrate the utility of these materials as intricate optical tags with both rapid and in-depth screening techniques, utilizing orthogonal identifiers across composition, emission spectra, and emission decay dynamics. This work highlights the important effect of linker selection in controlling the resulting photoluminescent properties in MOFs and opens an avenue for the targeted design of highly complex, multifunctional optical tags.

7.
ACS Appl Mater Interfaces ; 13(47): 56337-56347, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34793131

ABSTRACT

In the pursuit of highly stable and selective metal-organic frameworks (MOFs) for the adsorption of caustic acid gas species, an entire series of rare earth MOFs have been explored. Each of the MOFs in this series (RE-DOBDC; RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; DOBDC = 2,5-dihydroxyterepthalic acid) was synthesized in the tetragonal space group I4/m. Crystallized MOF samples, specifically Eu-DOBDC, were seen to have a combination of monodentate and bidentate binding when synthesized under typical reaction conditions, resulting in a contortion of the structure. However, extended crystallization times determined that this binding is kinetically controlled and that the monodentate binding option was crystallographically eliminated by extended reaction times at higher temperatures. Furthermore, this series allows for the direct study of the effect of the metal center on the structure of the of the MOF; herein, the lanthanide metal ionic radii contraction across the periodic table results in a reduction of the MOF pore size and lattice parameters. Scanning electron microscopy-energy-dispersive spectroscopy was used to investigate the stages of crystal growth for these RE-DOBDC MOFs. All MOFs, except Er-DOBDC had a minimum of two stages of growth. These analogues were demonstrated by analysis of neutron diffraction (PND) to exhibit a cooperative rotational distortion of the secondary building unit, resulting in two crystallographically distinct linker sublattices. Computational modeling efforts were used to show distinct differences on acid gas (NO2 and SO2) binding energies for RE-DOBDC MOFs when comparing the monodentate/bidentate combined linker with the bidentate-only linker crystal structures.

8.
Angew Chem Int Ed Engl ; 60(3): 1203-1211, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33137241

ABSTRACT

Optical tags provide a way to quickly and unambiguously identify valuable assets. Current tag fluorophore options lack the tunability to allow combined methods of encoding in a single material. Herein we report a design strategy to encode multilayer complexity in a family of heterometallic rare-earth metal-organic frameworks based on highly connected nonanuclear clusters. To impart both intricacy and security, a synergistic approach was implemented resulting in both overt (visible) and covert (near-infrared, NIR) properties, with concomitant multi-emissive spectra and tunable luminescence lifetimes. Tag authentication is validated with a variety of orthogonal detection methodologies. Importantly, the effect induced by subtle compositional changes on intermetallic energy transfer, and thus on the resulting photophysical properties, is demonstrated. This strategy can be widely implemented to create a large library of highly complex, difficult-to-counterfeit optical tags.

9.
ACS Appl Mater Interfaces ; 12(20): 22845-22852, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32337965

ABSTRACT

A novel metal-organic framework (MOF), Mn-DOBDC, has been synthesized in an effort to investigate the role of both the metal center and presence of free linker hydroxyls on the luminescent properties of DOBDC (2,5-dihydroxyterephthalic acid) containing MOFs. Co-MOF-74, RE-DOBDC (RE-Eu and Tb), and Mn-DOBDC have been synthesized and analyzed by powder X-ray diffraction (PXRD) and the fluorescent properties probed by UV-Vis spectroscopy and density functional theory (DFT). Mn-DOBDC has been synthesized by a new method involving a concurrent facile reflux synthesis and slow crystallization, resulting in yellow single crystals in monoclinic space group C2/c. Mn-DOBDC was further analyzed by single-crystal X-ray diffraction (SCXRD), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and photoluminescent emission. Results indicate that the luminescent properties of the DOBDC linker are transferred to the three-dimensional structures of both the RE-DOBDC and Mn-DOBDC, which contain free hydroxyls on the linker. In Co-MOF-74 however, luminescence is quenched in the solid state due to binding of the phenolic hydroxyls within the MOF structure. Mn-DOBDC exhibits a ligand-based tunable emission that can be controlled in solution by the use of different solvents.

SELECTION OF CITATIONS
SEARCH DETAIL
...