Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatol Commun ; 3(8): 1085-1097, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31388629

ABSTRACT

Farnesoid X receptor (FXR) agonism is emerging as an important potential therapeutic mechanism of action for multiple chronic liver diseases. The bile acid-derived FXR agonist obeticholic acid (OCA) has shown promise in a phase 2 study in patients with nonalcoholic steatohepatitis (NASH). Here, we report efficacy of the novel nonbile acid FXR agonist tropifexor (LJN452) in two distinct preclinical models of NASH. The efficacy of tropifexor at <1 mg/kg doses was superior to that of OCA at 25 mg/kg in the liver in both NASH models. In a chemical and dietary model of NASH (Stelic animal model [STAM]), tropifexor reversed established fibrosis and reduced the nonalcoholic fatty liver disease activity score and hepatic triglycerides. In an insulin-resistant obese NASH model (amylin liver NASH model [AMLN]), tropifexor markedly reduced steatohepatitis, fibrosis, and profibrogenic gene expression. Transcriptome analysis of livers from AMLN mice revealed 461 differentially expressed genes following tropifexor treatment that included a combination of signatures associated with reduction of oxidative stress, fibrogenesis, and inflammation. Conclusion: Based on preclinical validation in animal models, tropifexor is a promising investigational therapy that is currently under phase 2 development for NASH.

2.
J Gerontol A Biol Sci Med Sci ; 73(7): 845-852, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29304191

ABSTRACT

Rapalogs, inhibitors of mTORC1 (mammalian target of rapamycin complex 1), increase life span and delay age-related phenotypes in many species. However, the molecular mechanisms have not been fully elucidated. We determined gene expression changes comparing 6- and 24-month-old rats in the kidney, liver, and skeletal muscle, and asked which of these changes were counter-regulated by a clinically-translatable (short-term and low-concentration) treatment, with a rapalog (RAD001). Surprisingly, RAD001 had a more pronounced effect on the kidney under this regimen in comparison to the liver or skeletal muscle. Histologic evaluation of kidneys revealed that the severity of chronic progressive nephropathy lesions was lower in kidneys from 24-month-old rats treated with RAD001 compared with vehicle. In addition to other gene expression changes, c-Myc, which has been shown to regulate aging, was induced by aging in the kidney and counter-regulated by RAD001. RAD001 caused a decrease in c-Myc protein, which could be rescued by a proteasome inhibitor. These findings point to settings for use of mTORC1 inhibitors to treat age-related disorders, and highlight c-Myc regulation as one of the potential mechanisms by which mTORC1 inhibition is perturbing age-related phenotypes.


Subject(s)
Aging/drug effects , Everolimus/administration & dosage , Kidney/drug effects , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Aging/genetics , Aging/pathology , Animals , Drug Administration Schedule , Enzyme Inhibitors/administration & dosage , Gene Expression/drug effects , Gene Expression Profiling , HEK293 Cells , Humans , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Longevity/drug effects , Longevity/genetics , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Rats , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology
3.
J Immunotoxicol ; 13(4): 449-52, 2016 07.
Article in English | MEDLINE | ID: mdl-27216540

ABSTRACT

The objective of this study was to characterize the variability of rat lymphoid organ weights and morphology following treatment with a known immunotoxicant, with a focus on the usefulness of evaluating popliteal lymph node weight and histology. Cyclophosphamide was administered to male Sprague-Dawley rats by oral gavage at doses of 2, 7 or 12 mg/kg/day for 10 consecutive days. Left and right popliteal lymph nodes (PLN), spleen and thymus were collected at necropsy, weighed, fixed and processed for histopathology. Femoral bone marrow was also collected, fixed and processed for histology. Organ weight variability was greater for PLN than for either spleen or thymus in control animals. There was a significant but weak correlation between paired left and right PLN weights (p < 0.005; r(2) = 0.2774). Significant treatment-related decreases in lymphoid organ weights were observed in spleen and thymus at ≥ 7 mg/kg/day (p < 0.01), whereas in PLN a significant decrease (p < 0.05) was noted only at 12 mg/kg/day. The inclusion of PLN did not enhance the sensitivity of detection of systemic treatment-related changes in lymphoid organs in a rat cyclophosphamide model.


Subject(s)
Cyclophosphamide/adverse effects , Drug-Related Side Effects and Adverse Reactions/diagnosis , Immunosuppressive Agents/adverse effects , Lymph Nodes/drug effects , Monitoring, Immunologic/methods , Animals , Bone Marrow/drug effects , Bone Marrow/pathology , Cyclophosphamide/therapeutic use , Drug-Related Side Effects and Adverse Reactions/pathology , Immunosuppressive Agents/therapeutic use , Lymph Nodes/pathology , Male , Organ Size , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Spleen/drug effects , Spleen/pathology , Thymus Gland/drug effects , Thymus Gland/pathology
4.
Nat Cell Biol ; 16(11): 1069-79, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25327288

ABSTRACT

Cells rely on autophagy to clear misfolded proteins and damaged organelles to maintain cellular homeostasis. In this study we use the new autophagy inhibitor PIK-III to screen for autophagy substrates. PIK-III is a selective inhibitor of VPS34 that binds a unique hydrophobic pocket not present in related kinases such as PI(3)Kα. PIK-III acutely inhibits autophagy and de novo lipidation of LC3, and leads to the stabilization of autophagy substrates. By performing ubiquitin-affinity proteomics on PIK-III-treated cells we identified substrates including NCOA4, which accumulates in ATG7-deficient cells and co-localizes with autolysosomes. NCOA4 directly binds ferritin heavy chain-1 (FTH1) to target the iron-binding ferritin complex with a relative molecular mass of 450,000 to autolysosomes following starvation or iron depletion. Interestingly, Ncoa4(-/-) mice exhibit a profound accumulation of iron in splenic macrophages, which are critical for the reutilization of iron from engulfed red blood cells. Taken together, the results of this study provide a new mechanism for selective autophagy of ferritin and reveal a previously unappreciated role for autophagy and NCOA4 in the control of iron homeostasis in vivo.


Subject(s)
Autophagy/physiology , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Ferritins/metabolism , Homeostasis/physiology , Iron/metabolism , Nuclear Receptor Coactivators/metabolism , Animals , Autophagy/drug effects , Cells, Cultured , Humans , Lysosomes/metabolism , Mice , Phagosomes/metabolism , Protein Binding
5.
Mol Cell Biol ; 33(1): 98-110, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23109424

ABSTRACT

Autophagy is a vesicular trafficking pathway that regulates the degradation of aggregated proteins and damaged organelles. Initiation of autophagy requires several multiprotein signaling complexes, such as the ULK1 kinase complex and the Vps34 lipid kinase complex, which generates phosphatidylinositol 3-phosphate [PtdIns(3)P] on the forming autophagosomal membrane. Alterations in autophagy have been reported for various diseases, including myopathies. Here we show that skeletal muscle autophagy is compromised in mice deficient in the X-linked myotubular myopathy (XLMTM)-associated PtdIns(3)P phosphatase myotubularin (MTM1). Mtm1-deficient muscle displays several cellular abnormalities, including a profound increase in ubiquitin aggregates and abnormal mitochondria. Further, we show that Mtm1 deficiency is accompanied by activation of mTORC1 signaling, which persists even following starvation. In vivo pharmacological inhibition of mTOR is sufficient to normalize aberrant autophagy and improve muscle phenotypes in Mtm1 null mice. These results suggest that aberrant mTORC1 signaling and impaired autophagy are consequences of the loss of Mtm1 and may play a primary role in disease pathogenesis.


Subject(s)
Autophagy/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Proteins/metabolism , Animals , Autophagy/drug effects , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Multiprotein Complexes , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , Myopathies, Structural, Congenital/pathology , Phosphatidylinositol Phosphates/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Proteins/antagonists & inhibitors , Signal Transduction/genetics , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Ubiquitin/metabolism
6.
Am J Vet Res ; 67(3): 387-91, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16506897

ABSTRACT

OBJECTIVE: To determine cardiovascular effects of desflurane in mechanically ventilated calves. ANIMALS: 8 healthy male calves. PROCEDURE: Calves were anesthetized by face mask administration of desflurane to permit instrumentation. Administration of desflurane was temporarily discontinued until mean arterial blood pressure increased to >or= 100 mm Hg, at which time baseline cardiovascular values, pulmonary arterial temperature, end-tidal CO(2) tension, and end-tidal desflurane concentration were recorded. Cardiac index and systemic and pulmonary vascular resistances were calculated. Arterial blood gas variables were measured and calculated. Mean end-tidal concentration of desflurane at this time was 3.4%. After collection of baseline values, administration of 10% end-tidal concentration of desflurane was resumed and calves were connected to a mechanical ventilator. Cardiovascular data were collected at 5, 10, 15, 30, and 45 minutes, whereas arterial blood gas data were collected at 15 and 45 minutes after collection of baseline data. RESULTS: Mean +/- SD duration from beginning desflurane administration to intubation of the trachea was 151 +/- 32.8 seconds. Relative to baseline, desflurane anesthesia was associated with a maximal decrease in arterial blood pressure of 35% and a decrease in systemic vascular resistance of 34%. Pulmonary arterial blood temperature was decreased from 15 through 45 minutes, compared with baseline values. There were no significant changes in other measured variables. All calves recovered from anesthesia without complications. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of desflurane for induction and maintenance of general anesthesia in calves was smooth, safe, and effective. Cardiopulmonary variables remained in reference ranges throughout the study period.


Subject(s)
Anesthetics, Inhalation/pharmacology , Cardiovascular System/drug effects , Isoflurane/analogs & derivatives , Animals , Blood Pressure/drug effects , Cattle , Desflurane , Heart Rate/drug effects , Isoflurane/pharmacology , Male , Pulmonary Circulation/drug effects , Vascular Resistance/drug effects
7.
J Vet Diagn Invest ; 15(2): 157-62, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12661726

ABSTRACT

Formalin-fixed, paraffin-embedded tissue sections from a 3-year-old female Angora goat suffering from clinical scrapie were immunostained after hydrated autoclaving using a monoclonal antibody (mAb, F99/97.6.1; IgG1) specific for a conserved epitope on the prion protein. Widespread and prominent deposition of the scrapie isoform of the prion protein (PrPSc) was observed in the brain, brainstem, spinal cord, retina, postganglionic neurons associated with parasympathetic ganglia of myenteric and submucosal plexuses, Peyer's patches, peripheral lymph nodes, and pharyngeal and palatine tonsils. The goat was homozygous for PrP alleles encoding 5 octapeptide repeat sequences in the N-terminal region of the prion protein and isoleucine at codon 142, a genotype associated with high susceptibility and short incubation times in goats. The results of this study indicate that mAb F99/97.6.1 is useful for detection of PrPSc deposition, and this is a specific and reliable immunohistochemical adjunct to histopathology for diagnosis of natural caprine scrapie, although precise determination of the diagnostic sensitivity and specificity of the assay as a diagnostic test for scrapie in goats will require examination of a sufficiently large sample size. As with ovine scrapie, prion protein is widely distributed in the central and peripheral nervous systems, gastrointestinal tract, and lymphoid tissues in natural caprine scrapie.


Subject(s)
Goat Diseases/diagnosis , Goat Diseases/metabolism , Immunohistochemistry/veterinary , PrPSc Proteins/analysis , Scrapie/diagnosis , Scrapie/metabolism , Animals , Female , Goat Diseases/pathology , Goats , Organ Specificity , PrPSc Proteins/immunology , Scrapie/pathology , Sensitivity and Specificity
8.
Clin Diagn Lab Immunol ; 9(2): 417-24, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11874888

ABSTRACT

To investigate the in vivo role of CD4(+) T lymphocytes during acute anaplasmosis, thymectomized calves were selectively depleted of CD4(+) T lymphocytes by treatment with anti-CD4 monoclonal antibody (MAb) and were then infected with the Florida strain of Anaplasma marginale in two sequential experiments (experiments 1 and 2). Treatment of thymectomized calves with a total of 5.0 mg of anti-CD4 MAb/kg of body weight during the 1st week followed by 0.3-mg/kg doses administered twice weekly for 7 weeks resulted in significant depletion of CD3(+) CD4(+) and CD4(+) CD45R(+) (naive) T lymphocytes from blood, spleen, and peripheral lymph nodes for the duration of the 8-week study, compared to the results for thymectomized control calves treated with a subclass-matched MAb. All calves became parasitemic and pyretic following experimental infection with A. marginale, and decreases in packed cell volume (PCV) coincided with peak parasitemia. No significant differences in PCV or parasitemia were observed between treatment groups. Thymectomized calves treated with anti-CD4 MAb were able to mount an anti-A. marginale antibody response, although in experiment 2, anti-CD4 MAb-treated calves had four- to sixfold lower immunoglobulin G1 (IgG1) and no detectable IgG2 anti-A. marginale major surface protein 2-specific antibody titers compared to thymectomized control calves treated with a subclass-matched MAb. At the level of CD4(+)-T-lymphocyte depletion achieved and experimental anaplasmosis induced, thymectomized anti-CD4 MAb-treated calves were able to control acute anaplasmosis. This was in contrast to the prediction that significant depletion of CD4(+) T lymphocytes would abrogate resistance to acute infection.


Subject(s)
Anaplasmosis/immunology , Antibodies, Monoclonal/pharmacology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cattle Diseases/immunology , Acute Disease , Animals , Antibodies, Bacterial/blood , Cattle , Erythrocytes/microbiology , Hematocrit , Immunoglobulin G/blood , Lymph Nodes/cytology , Male , Spleen/cytology , Thymectomy
SELECTION OF CITATIONS
SEARCH DETAIL
...