Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(9): R418-R434, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38714175

ABSTRACT

Ecosystem restoration can increase the health and resilience of nature and humanity. As a result, the international community is championing habitat restoration as a primary solution to address the dual climate and biodiversity crises. Yet most ecosystem restoration efforts to date have underperformed, failed, or been burdened by high costs that prevent upscaling. To become a primary, scalable conservation strategy, restoration efficiency and success must increase dramatically. Here, we outline how integrating ten foundational ecological theories that have not previously received much attention - from hierarchical facilitation to macroecology - into ecosystem restoration planning and management can markedly enhance restoration success. We propose a simple, systematic approach to determining which theories best align with restoration goals and are most likely to bolster their success. Armed with a century of advances in ecological theory, restoration practitioners will be better positioned to more cost-efficiently and effectively rebuild the world's ecosystems and support the resilience of our natural resources.


Subject(s)
Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Ecology/methods , Environmental Restoration and Remediation/methods , Biodiversity , Climate Change
2.
Mar Environ Res ; 194: 106307, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150787

ABSTRACT

Non-native species are expanding globally and can alter ecosystem functions, including food web dynamics, community structure and carbon storage. Seagrass are foundation species that contribute a variety of ecosystem services in near-shore coastal ecosystems, including a significant sink of carbon. In the Caribbean, the rapidly expanding non-native Halophila stipulacea has unknown impacts on carbon storage. To investigate the impacts on carbon storage, we quantified organic carbon (Corg) content in sediment and seagrass tissues from monotypic H. stipulacea beds, mixed native seagrass beds dominated by Thalassia testudinum and Syringodium filiforme, and unvegetated substrate in St. John, USVI. We found native seagrass-vegetated sediment contained 1.3 times more Corg than sediment covered by H. stipulacea, and 1.6 times more Corg than unvegetated areas on average. Whereas, H. stipulacea-dominated substrate stored 1.2 times more Corg than unvegetated substrate. Likewise, native species contained 2.2 times more aboveground biomass and 6.0 times more belowground biomass than H. stipulacea. Since seagrasses are critical sources of carbon sequestration, our results suggest that invading H. stipulacea is associated with lower carbon stocks which has potential implications for conservation activities and climate change mitigation.


Subject(s)
Alismatales , Ecosystem , Carbon/analysis , Biomass , Caribbean Region , Carbon Sequestration
3.
PLoS One ; 18(5): e0286327, 2023.
Article in English | MEDLINE | ID: mdl-37228166

ABSTRACT

While the effects of top-down and bottom-up forces on aboveground plant growth have been extensively examined, less is known about the relative impacts of these factors on other aspects of plant life history. In a fully-factorial, field experiment in a salt marsh in Virginia, USA, we manipulated grazing intensity (top-down) and nutrient availability (bottom-up) and measured the response in a suite of traits for smooth cordgrass (Spartina alterniflora). The data presented within this manuscript are unpublished, original data that were collected from the same experiment presented in Silliman and Zieman 2001. Three categories of traits and characteristics were measured: belowground characteristics, litter production, and reproduction, encompassing nine total responses. Of the nine response variables measured, eight were affected by treatments. Six response variables showed main effects of grazing and/ or fertilization, while three showed interactive effects. In general, fertilization led to increased cordgrass belowground biomass and reproduction, the former of which conflicts with predictions based on resource competition theory. Higher grazing intensity had negative impacts on both belowground biomass and reproduction. This result contrasts with past studies in this system that concluded grazer impacts are likely relegated to aboveground plant growth. In addition, grazers and fertilization interacted to alter litter production so that litter production disproportionately increased with fertilization when grazers were present. Our results revealed both predicted and unexpected effects of grazing and nutrient availability on understudied traits in a foundational plant and that these results were not fully predictable from understanding the impacts on aboveground biomass alone. Since these diverse traits link to diverse ecosystem functions, such as carbon burial, nutrient cycling, and ecosystem expansion, developing future studies to explore multiple trait responses and synthesizing the ecological knowledge on top-down and bottom-up forces with trait-based methodologies may provide a promising path forward in predicting variability in ecosystem function.


Subject(s)
Ecosystem , Poaceae , Plants , Biomass , Wetlands
4.
Bioscience ; 72(11): 1088-1098, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36325106

ABSTRACT

As efforts to restore coastal habitats accelerate, it is critical that investments are targeted to most effectively mitigate and reverse habitat loss and its impacts on biodiversity. One likely but largely overlooked impediment to effective restoration of habitat-forming organisms is failing to explicitly consider non-habitat-forming animals in restoration planning, implementation, and monitoring. These animals can greatly enhance or degrade ecosystem function, persistence, and resilience. Bivalves, for instance, can reduce sulfide stress in seagrass habitats and increase drought tolerance of saltmarsh vegetation, whereas megaherbivores can detrimentally overgraze seagrass or improve seagrass seed germination, depending on the context. Therefore, understanding when, why, and how to directly manipulate or support animals can enhance coastal restoration outcomes. In support of this expanded restoration approach, we provide a conceptual framework, incorporating lessons from structured decision-making, and describe potential actions that could lead to better restoration outcomes using case studies to illustrate practical approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...