Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Sci Rep ; 13(1): 12721, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543642

ABSTRACT

The expansion of bean genome technologies has prompted new perspectives on generating resources and knowledge essential to research and implementing biotechnological tools for the practical operations of plant breeding programs. This study aimed to resequence the entire genome (whole genome sequencing-WGS) of 40 bean genotypes selected based on their significance in breeding programs worldwide, with the objective of generating an extensive database for the identification of single nucleotide polymorphisms (SNPs). Over 6 million SNPs were identified, distributed across the 11 bean chromosomes. After quality variant filtering, 420,509 high-quality SNPs were established, with an average of 38,228 SNPs per chromosome. These variants were categorized based on their predicted effects, revealing that the majority exerted a modifier impact on non-coding genome regions (94.68%). Notably, a significant proportion of SNPs occurred in intergenic regions (62.89%) and at least one SNP was identified in 58.63% of the genes annotated in the bean genome. Of particular interest, 7841 SNPs were identified in 85% of the putative plant disease defense-related genes, presenting a valuable resource for crop breeding efforts. These findings provide a foundation for the development of innovative and broadly applicable technologies for the routine selection of superior genotypes in global bean improvement and germplasm characterization programs.


Subject(s)
Phaseolus , Phaseolus/genetics , Genome, Plant/genetics , Plant Breeding , Sequence Analysis, DNA , Genotype , Polymorphism, Single Nucleotide
2.
Front Plant Sci ; 11: 574674, 2020.
Article in English | MEDLINE | ID: mdl-33343591

ABSTRACT

Drought stress is an important abiotic factor limiting common bean yield, with great impact on the production worldwide. Understanding the genetic basis regulating beans' yield and seed weight (SW) is a fundamental prerequisite for the development of superior cultivars. The main objectives of this work were to conduct genome-wide marker discovery by genotyping a Mesoamerican panel of common bean germplasm, containing cultivated and landrace accessions of broad origin, followed by the identification of genomic regions associated with productivity under two water regimes using different genome-wide association study (GWAS) approaches. A total of 11,870 markers were genotyped for the 339 genotypes, of which 3,213 were SilicoDArT and 8,657 SNPs derived from DArT and CaptureSeq. The estimated linkage disequilibrium extension, corrected for structure and relatedness (r 2 sv ), was 98.63 and 124.18 kb for landraces and breeding lines, respectively. Germplasm was structured into landraces and lines/cultivars. We carried out GWASs for 100-SW and yield in field environments with and without water stress for 3 consecutive years, using single-, segment-, and gene-based models. Higher number of associations at high stringency was identified for the SW trait under irrigation, totaling ∼185 QTLs for both single- and segment-based, whereas gene-based GWASs showed ∼220 genomic regions containing ∼650 genes. For SW under drought, 18 QTLs were identified for single- and segment-based and 35 genes by gene-based GWASs. For yield, under irrigation, 25 associations were identified, whereas under drought the total was 10 using both approaches. In addition to the consistent associations detected across experiments, these GWAS approaches provided important complementary QTL information (∼221 QTLs; 650 genes; r 2 from 0.01% to 32%). Several QTLs were mined within or near candidate genes playing significant role in productivity, providing better understanding of the genetic mechanisms underlying these traits and making available molecular tools to be used in marker-assisted breeding. The findings also allowed the identification of genetic material (germplasm) with better yield performance under drought, promising to a common bean breeding program. Finally, the availability of this highly diverse Mesoamerican panel is of great scientific value for the analysis of any relevant traits in common bean.

3.
Genet Mol Biol ; 43(1): e20180259, 2020.
Article in English | MEDLINE | ID: mdl-31429863

ABSTRACT

Genes related to the response to drought stress in leaf and root tissue of drought-susceptible (DS) and tolerant (DT) genotypes were characterized by RNA-Seq. In total, 54,750 transcripts, representative of 28,590 genes, were identified; of these, 1,648 were of high-fidelity (merge of 12 libraries) and described for the first time in the Andean germplasm. From the 1,239 differentially expressed genes (DEGs), 458 were identified in DT, with a predominance of genes in categories of oxidative stress, response to stimulus and kinase activity. Most genes related to oxidation-reduction terms in roots were early triggered in DT (T75) compared to DS (T150) suggestive of a mechanism of tolerance by reducing the damage from ROS. Among the KEGG enriched by DEGs up-regulated in DT leaves, two related to the formation of Sulfur-containing compounds, which are known for their involvement in tolerance to abiotic stresses, were common to all treatments. Through qPCR, 88.64% of the DEGs were validated. A total of 151,283 variants were identified and functional effects estimated for 85,780. The raw data files were submitted to the NCBI database. A transcriptome map revealed new genes and isoforms under drought. These results supports a better understanding of the drought tolerance mechanisms in beans.

4.
Environ Sci Pollut Res Int ; 25(31): 31149-31164, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30187414

ABSTRACT

In the Brazilian wet and dry seasons, common beans (Phaseolus vulgaris L.) are grown under rainfed conditions with unexpected episodes of drought and high temperatures. The objective of this study was to evaluate the physiological mechanisms associated with drought adaptation traits in landraces and line/cultivars of beans from the Andean and Mesoamerican gene pools. Twenty-five genotypes, contrasting in terms of drought tolerance, were evaluated in a phenotyping platform under irrigated and rainfed conditions. Agronomic and physiological parameters such as grain yield, shoot structures, gas exchange, water potential, and osmotic adjustment were evaluated. The stress intensity was estimated to be 0.57, and the grain yield reduction ranged from 22 to 89%. Seven accessions, representative of the Andean and Mesoamerican germplasm (CF 200012, CF 240056, CF 250002, CF 900004, CNF 4497, CNF 7382, and SEA 5), presented superior performance in grain yield with and without stresses. The physiological responses under abiotic stresses were highly variable among the genotypes, and two Mesoamerican accessions (CF 200012 and SEA 5) showed more favorable adaptive responses. As the main secondary physiological traits, gas exchange and osmotic adjustment should be evaluated together with the grain yield to increase the selection efficiency of abiotic stresses-tolerant common bean lines.


Subject(s)
Adaptation, Physiological , Droughts , Phaseolus/physiology , Stress, Physiological , Brazil , Edible Grain/physiology , Genotype , Phenotype , Plant Breeding
5.
Ciênc. rural (Online) ; 48(8): e20170497, 2018. tab, graf
Article in English | LILACS | ID: biblio-1045189

ABSTRACT

ABSTRACT: We aimed to apply genomic information based on SNP (single nucleotide polymorphism) markers for the genetic evaluation of the traits "stay-green" (SG), plant architecture (PA), grain aspect (GA) and grain yield (GY) in common bean through Bayesian models. These models were compared in terms of prediction accuracy and ability for heritability estimation for each one of the mentioned traits. A total of 80 cultivars were genotyped for 377 SNP markers, whose effects were estimated by five different Bayesian models: Bayes A (BA), B (BB), C (BC), LASSO (BL) e Ridge regression (BRR). Although, prediction accuracies calculated by means of cross-validation have been similar within each trait, the BB model stood out for the trait SG, whereas the BRR was indicated for the remaining traits. The heritability estimates for the traits SG, PA, GA and GY were 0.61, 0.28, 0.32 and 0.29, respectively. In summary, the Bayesian methods applied here were effective and ease to be implemented. The used SNP markers can help in the early selection of promising genotypes, since incorporating genomic information increase the prediction accuracy of the estimated genetic merit.


RESUMO: Objetivou-se incorporar informações genômicas de marcadores SNP ("single nucleotide polymorphism") na avaliação genética das características "stay-green" (SG), arquitetura de planta (AP), aspecto de grãos (AG) e produtividade de grãos (PG) em feijoeiro-comum via modelos Bayesianos. Estes modelos foram comparados quanto a acurácia de predição e habilidade de estimação da herdabilidade para cada característica. Utilizaram-se informações de 80 cultivares genotipadas para 377 marcadores SNP, cujos efeitos de substituição alélica foram estimados por meio de cinco diferentes modelos Bayesianos: Bayes A (BA), B (BB), C (BC), LASSO (BL) e regressão "ridge" (BRR). Embora as acurácias de predição calculadas por meio de análise de validação cruzada tenham sido similares dentro de cada característica, o modelo BB se destacou para a característica SG, enquanto o modelo BRR foi indicado para as demais. As herdabilidades estimadas para SG, AP, AG e PG foram, respectivamente, 0,61, 0,28, 0,32 e 0,29. Em resumo, os métodos contemplados mostraram-se efetivos e de fácil implementação. O conjunto de marcadores utilizado pode auxiliar na seleção precoce de genótipos promissores, uma vez que a incorporação de informações genômicas aumenta a acurácia de predição do mérito genético estimado.

6.
Genet. mol. biol ; 40(4): 813-823, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-892451

ABSTRACT

Abstract The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean.

7.
Genet Mol Biol ; 40(4): 813-823, 2017.
Article in English | MEDLINE | ID: mdl-29064511

ABSTRACT

The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean.

SELECTION OF CITATIONS
SEARCH DETAIL
...