Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(32): 12258-12270, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35895288

ABSTRACT

Five cobalt(II) complexes of formula [CoCl2(Ln)2] [1 with L1 = 1-benzyl-2-phenyl-1H-benzimidazole, 2 with L2 = 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole, 3 with L3 = 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1H-benzimidazole, 4 with L4 = 1-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole and 5 with L5 = 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole] have been synthesised, spectroscopically characterised and cryomagnetically investigated. The crystal structures of 1, 3, 4 and 5 have been determined by X-ray diffraction on single crystals. Each cobalt(II) ion is four-coordinate in a distorted tetrahedral environment built by two chloride anions and two benzimidazole ligands. The neutral molecules are well separated from each other, shortest intermolecular cobalt⋯cobalt distances being greater than 9.0 Å. Static (dc) magnetic susceptibility measurements in the temperature range 2.0-300 K of 1-5 reveal the occurrence of a Curie law behaviour of magnetically non-interacting spin quadruplets in the high-temperature domain with a downturn at low temperatures due to magnetic anisotropy. The values of the D and E/D parameters for these compounds vary in the ranges -8.75 to +8.96 cm-1 and 0.00140 to 0.23, respectively. Dynamic (ac) magnetic susceptibility measurements of 1-5 show slow magnetic relaxation in the lack (1) or under the presence (1-5) of applied dc magnetic fields, a feature which is typical of single-molecule magnet behaviour (SMM). The analysis of the ac data shows that a thermally activated Orbach relaxation mechanism dominates this behaviour. Complexes 1-5 also act as efficient and highly selective eco-friendly catalysts in the coupling reaction between CO2 and epoxides to produce cyclic carbonates under solvent-free conditions. Under optimized reaction conditions, different epoxides were converted to the respective cyclic carbonate, with excellent conversions, using catalyst 4.

2.
Chem Commun (Camb) ; 56(95): 15024-15027, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33185643

ABSTRACT

Here we discovered an unprecedented giant octahedral coordination compound bearing 16 Zn2+, 12 Na+, 8 O2-, 4 OH-, 13 H2O and 6 L4- ligands [L4- = fully deprotonated tetra(carboxymethoxy)calix[4]arene]. Its structure was elucidated by single-crystal X-ray diffraction, wavelength-dispersive X-ray spectroscopy and MALDI-TOF mass spectrometry. This compound, Zn8Na6L6⊃Zn8Na6O8(OH)4(H2O)13 (external⊃internal), has eight tetrahedral zinc ions forming the coordination vertices of an outermost cube where carboxylate groups from the sodium calixarenes are anchored. Its core consists of eight Zn2+, six Na+, eight O2-, and four OH- distributed over three layers, besides thirteen coordinated H2O molecules.

3.
J Org Chem ; 85(23): 15622-15630, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33175538

ABSTRACT

The use of star anise oil from a natural source as a dienophile in the multicomponent double Povarov reaction (MCPRs) to produce highly substituted julolidines with diverse technological applications is described. Within the framework of green chemistry, these MCPRs have many advantages such as (i) use of water in the reaction, (ii) creation of up to six bonds in one sequence, (iii) water as a sole waste, (iv) 100% of carbon economy, (v) a metal-free process, and (vi) nontoxic and reusable organocatalysts. These advantages, along with a simple workup procedure, make this protocol greener for the synthesis of julolidines.

4.
J Am Chem Soc ; 141(8): 3400-3403, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30702877

ABSTRACT

We report a novel bright deep-blue-emitting crystal form based on a simple cadmium coordination polymer with an impressive external photoluminescence quantum yield of 75.4(9)%.

SELECTION OF CITATIONS
SEARCH DETAIL
...