Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 382(6667): eadf0834, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824647

ABSTRACT

We analyzed >700,000 single-nucleus RNA sequencing profiles from 106 donors during prenatal and postnatal developmental stages and identified lineage-specific programs that underlie the development of specific subtypes of excitatory cortical neurons, interneurons, glial cell types, and brain vasculature. By leveraging single-nucleus chromatin accessibility data, we delineated enhancer gene regulatory networks and transcription factors that control commitment of specific cortical lineages. By intersecting our results with genetic risk factors for human brain diseases, we identified the cortical cell types and lineages most vulnerable to genetic insults of different brain disorders, especially autism. We find that lineage-specific gene expression programs up-regulated in female cells are especially enriched for the genetic risk factors of autism. Our study captures the molecular progression of cortical lineages across human development.


Subject(s)
Brain Diseases , Cerebral Cortex , Neurons , Female , Humans , Infant, Newborn , Pregnancy , Brain Diseases/genetics , Cerebral Cortex/growth & development , Gene Regulatory Networks , Interneurons/metabolism , Neurons/metabolism , Single-Cell Analysis , Male , Risk Factors
2.
BMC Biol ; 19(1): 257, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34863182

ABSTRACT

BACKGROUND: The evolutionary history of cell types provides insights into how morphological and functional complexity arose during animal evolution. Photoreceptor cell types are particularly broadly distributed throughout Bilateria; however, their evolutionary relationship is so far unresolved. Previous studies indicate that ciliary photoreceptors are homologous at least within chordates, and here, we present evidence that a related form of this cell type is also present in echinoderm larvae. RESULTS: Larvae of the purple sea urchin Strongylocentrotus purpuratus have photoreceptors that are positioned bilaterally in the oral/anterior apical neurogenic ectoderm. Here, we show that these photoreceptors express the transcription factor Rx, which is commonly expressed in ciliary photoreceptors, together with an atypical opsin of the GO family, opsin3.2, which localizes in particular to the cilia on the cell surface of photoreceptors. We show that these ciliary photoreceptors express the neuronal marker synaptotagmin and are located in proximity to pigment cells. Furthermore, we systematically identified additional transcription factors expressed in these larval photoreceptors and found that a majority are orthologous to transcription factors expressed in vertebrate ciliary photoreceptors, including Otx, Six3, Tbx2/3, and Rx. Based on the developmental expression of rx, these photoreceptors derive from the anterior apical neurogenic ectoderm. However, genes typically involved in eye development in bilateria, including pax6, six1/2, eya, and dac, are not expressed in sea urchin larval photoreceptors but are instead co-expressed in the hydropore canal. CONCLUSIONS: Based on transcription factor expression, location, and developmental origin, we conclude that the sea urchin larval photoreceptors constitute a cell type that is likely homologous to the ciliary photoreceptors present in chordates.


Subject(s)
Photoreceptor Cells , Sea Urchins , Animals , Ectoderm/metabolism , Gene Expression Regulation, Developmental , Larva , Photoreceptor Cells/metabolism , Sea Urchins/genetics , Sea Urchins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Dev Genes Evol ; 220(9-10): 275-95, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21116826

ABSTRACT

The similarity in the genetic regulation of arthropod and vertebrate appendage formation has been interpreted as the product of a plesiomorphic gene network that was primitively involved in bilaterian appendage development and co-opted to build appendages (in modern phyla) that are not historically related as structures. Data from lophotrochozoans are needed to clarify the pervasiveness of plesiomorphic appendage-forming mechanisms. We assayed the expression of three arthropod and vertebrate limb gene orthologs, Distal-less (Dll), dachshund (dac), and optomotor blind (omb), in direct-developing juveniles of the polychaete Neanthes arenaceodentata. Parapodial Dll expression marks pre-morphogenetic notopodia and neuropodia, becoming restricted to the bases of notopodial cirri and to ventral portions of neuropodia. In outgrowing cephalic appendages, Dll activity is primarily restricted to proximal domains. Dll expression is also prominent in the brain. dac expression occurs in the brain, nerve cord ganglia, a pair of pharyngeal ganglia, presumed interneurons linking a pair of segmental nerves, and in newly differentiating mesoderm. Domains of omb expression include the brain, nerve cord ganglia, one pair of anterior cirri, presumed precursors of dorsal musculature, and the same pharyngeal ganglia and presumed interneurons that express dac. Contrary to their roles in outgrowing arthropod and vertebrate appendages, Dll, dac, and omb lack comparable expression in Neanthes appendages, implying independent evolution of annelid appendage development. We infer that parapodia and arthropodia are not structurally or mechanistically homologous (but their primordia might be), that Dll's ancestral bilaterian function was in sensory and central nervous system differentiation, and that locomotory appendages possibly evolved from sensory outgrowths.


Subject(s)
Annelida/genetics , Homeodomain Proteins/genetics , Nuclear Proteins/genetics , T-Box Domain Proteins/genetics , Transcription Factors/genetics , Animals , Annelida/embryology , Evolution, Molecular , Gene Expression , Homeodomain Proteins/metabolism , Phylogeny
4.
Front Zool ; 7: 17, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20553614

ABSTRACT

BACKGROUND: Members of Family Nereididae have complex neural morphology exemplary of errant polychaetes and are leading research models in the investigation of annelid nervous systems. However, few studies focus on the development of their nervous system morphology. Such data are particularly relevant today, as nereidids are the subjects of a growing body of "evo-devo" work concerning bilaterian nervous systems, and detailed knowledge of their developing neuroanatomy facilitates the interpretation of gene expression analyses. In addition, new data are needed to resolve discrepancies between classic studies of nereidid neuroanatomy. We present a neuroanatomical overview based on acetylated alpha-tubulin labeling and confocal microscopy for post-embryonic stages of Neanthes arenaceodentata, a direct-developing nereidid. RESULTS: At hatching (2-3 chaetigers), the nervous system has developed much of the complexity of the adult (large brain, circumesophageal connectives, nerve cords, segmental nerves), and the stomatogastric nervous system is partially formed. By the 5-chaetiger stage, the cephalic appendages and anal cirri are well innervated and have clear connections to the central nervous system. Within one week of hatching (9-chaetigers), cephalic sensory structures (e.g., nuchal organs, Langdon's organs) and brain substructures (e.g., corpora pedunculata, stomatogastric ganglia) are clearly differentiated. Additionally, the segmental-nerve architecture (including interconnections) matches descriptions of other, adult nereidids, and the pharynx has developed longitudinal nerves, nerve rings, and ganglia. All central roots of the stomatogastric nervous system are distinguishable in 12-chaetiger juveniles. Evidence was also found for two previously undescribed peripheral nerve interconnections and aspects of parapodial muscle innervation. CONCLUSIONS: N. arenaceodentata has apparently lost all essential trochophore characteristics typical of nereidids. Relative to the polychaete Capitella, brain separation from a distinct epidermis occurs later in N. arenaceodentata, indicating different mechanisms of prostomial development. Our observations of parapodial innervation and the absence of lateral nerves in N. arenaceodentata are similar to a 19th century study of Alitta virens (formerly Nereis/Neanthes virens) but contrast with a more recent study that describes a single parapodial nerve pattern and lateral nerve presence in A. virens and two other genera. The latter study apparently does not account for among-nereidid variation in these major neural features.

SELECTION OF CITATIONS
SEARCH DETAIL
...