Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35886898

ABSTRACT

The spontaneous interaction between human papillomavirus type 16 (HPV16) L1 virus-like particles (VLPs) and non-functionalized gold nanoparticles (nfGNPs) interferes with the nfGNPs' salt-induced aggregation, inhibiting the red-blue color shift in the presence of NaCl. Electron microscopy and competition studies showed that color-shift inhibition is a consequence of direct nfGNP-VLP interaction and, thus, may produce a negative impact on the virus entry cell process. Here, an in vitro infection system based on the HPV16 pseudovirus (PsV) was used to stimulate the natural infection process in vitro. PsVs carry a pseudogenome with a reporter gene, resulting in a fluorescent signal when PsVs infect a cell, allowing quantification of the viral infection process. Aggregation assays showed that nfGNP-treated PsVs also inhibit color shift in the presence of NaCl. High-resolution microscopy confirmed nfGNP-PsV complex formation. In addition, PsVs can interact with silver nanoparticles, suggesting a generalized interaction of metallic nanoparticles with HPV16 capsids. The treatment of PsVs with nfGNPs produced viral infection inhibition at a higher level than heparin, the canonical inhibitor of HPV infection. Thus, nfGNPs can efficiently interfere with the HPV16 cell entry process and may represent a potential active component in prophylactic formulations to reduce the risk of HPV infection.


Subject(s)
Metal Nanoparticles , Oncogene Proteins, Viral , Papillomavirus Infections , Capsid Proteins/genetics , Gold/pharmacology , Gold/therapeutic use , Human papillomavirus 16/genetics , Humans , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/virology , Papillomavirus Infections/prevention & control , Silver , Sodium Chloride/pharmacology
2.
Nucleic Acid Ther ; 28(2): 97-105, 2018 04.
Article in English | MEDLINE | ID: mdl-29437522

ABSTRACT

Human papillomavirus type 16 (HPV16) DNA has been found in ∼50% of cervical tumors worldwide. HPV infection starts with the binding of the virus capsid to heparan sulfate (HS) receptors exposed on the surface of epithelial basal layer keratinocytes. Previously, our group isolated a high-affinity RNA aptamer (Sc5c3) specific for HPV16 L1 virus-like particles (VLPs). In this study, we report the inhibition of HPV16 infection by Sc5c3 in a pseudovirus (PsVs) model. 293TT cells were infected by HPV16 PsVs containing the yellow fluorescent protein (YFP) as reporter gene. Incubation of HPV16 PsVs with Sc5c3 before infection resulted in a dose-dependent decrease in YFP fluorescence, suggesting infection inhibition. Aptamer degradation by RNase A restored PsVs infectivity, supporting the previous observation that Sc5c3 aptamer can inhibit infection. VLP mutants with removed HS binding sites were used in binding assays to elucidate the Sc5c3 blocking mechanism; however, no binding difference was observed between wild-type and mutant VLPs, suggesting that pseudoinfection inhibition relies on mechanisms additional to electrostatic HS binding site interaction. A DNA/RNA Sc5c3 version also inhibited HPV PsVs infection, suggesting that a modified, nuclease-resistant Sc5c3 may be used to inhibit HPV16 infection in vivo.


Subject(s)
Aptamers, Nucleotide/pharmacology , Human papillomavirus 16/drug effects , Papillomavirus Infections/therapy , Binding Sites , Dose-Response Relationship, Drug , Genes, Reporter/drug effects , Genes, Reporter/genetics , HEK293 Cells , Heparitin Sulfate/metabolism , Human papillomavirus 16/genetics , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mutation , Plasmids
3.
Biosens Bioelectron ; 100: 176-183, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28889068

ABSTRACT

Colorimetric assays based on gold nanoparticles (GNPs) are of considerable interest for diagnostics because of their simplicity and low-cost. Nevertheless, a deep understanding of the interaction between the GNPs and the intended molecular target is critical for the development of reliable detection technologies. The present report describes the spontaneous interaction between HPV16 L1 virus-like particles (VLPs) and non-functionalized GNPs (nfGNPs) resulting in the inhibition of nfGNPs salt-induced aggregation and the stabilization of purified VLPs. Ionic-competition experiments suggested that the nature of nfGNPs-VLPs interaction is non-covalent. Adsorption of an RNA aptamer on nfGNPs surface showed an additive aggregation-inhibitory effect. The use of mutant VLPs confirmed that the interaction nfGNPs-VLPs is not mediated by the opposing superficial electrostatic charges, suggesting that non-electrostatic forces participate in the arrangement of nfGNPs on the VLPs surface. Competition experiments using increasing ethanol concentrations on nfGNPs-VLPs complexes suggested hydrophobic interactions as the main stabilizing force. Therefore, the nfGNPs-VLPs interaction described here should facilitate the development of adsorption assays based on nfGNPs for HPV detection and cervical cancer prevention.


Subject(s)
Gold/chemistry , Human papillomavirus 16/chemistry , Metal Nanoparticles/chemistry , Virion/chemistry , Adsorption , Aptamers, Nucleotide/chemistry , Binding Sites , Biosensing Techniques , Dimerization , Human papillomavirus 16/isolation & purification , Humans , Hydrophobic and Hydrophilic Interactions , Metal Nanoparticles/ultrastructure , Papillomavirus Infections/virology , Virion/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...