Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 118(5): 1164-1173, 2017 05.
Article in English | MEDLINE | ID: mdl-27684057

ABSTRACT

9-[(3-chloro)phenylamine]-2-[3-(diethylamine)propylamine]thiazolo[5,4-b]quinolone (D3ClP) is a bioisostere of N-(4-(acridin-9-ylamino)-3-methoxyphenyl)methanesulfonamide (m-AMSA) a DNA topoisomerase II inhibitor with proven cytotoxic activity and known to induce DNA damage and apoptotic cell death in K562 cells. However, recent evidence is not consistent with DNA topoisomerase II (DNA TOP2) as the primary target of D3ClP, in contrast to m-AMSA. We provide evidence of histone γH2AX phosphorylation at Ser135 in HeLa cells treated with D3ClP, a marker of DNA double strand repair through Mre11-Rad50-Nbs1 (MRN) pathway. Using two-dimensional gel electrophoresis and mass spectrometry, the upregulation of the protein GRP78, the cleavage of Cytokeratin 18, and the downregulation of prothymosine, calumenin, and the α chain of the nascent polypeptide associated complex were observed in HeLa cells treated with D3ClP. An increase in GRP78 has been related with the onset and progression of the unfolded protein response (UPR), a process aimed to reduce endoplasmic reticulum (ER) stress and protein misfolding. The IRE1-α dependent splicing of mRNA encoding X-box binding protein 1 was detected. Microtubule-associated Proteins 1A/1B, Light Chain 3-II (LC3b-II) accumulation was observed, and suggest some involvement of autophagy. The production of the pro-apoptotic protein DNA-damage-inducible protein 153 (GADD-153) was also detected. These results, are consistent with the induction of the UPR and the DNA-Damage Response in D3ClP-treated HeLa cells, and are also consistent with a concurrent apoptotic cell death. J. Cell. Biochem. 118: 1164-1173, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Aminoquinolines/pharmacology , DNA Damage , Proteomics/methods , Thiazoles/pharmacology , Unfolded Protein Response/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , HeLa Cells , Histones/metabolism , Humans , Phosphorylation , Proteome/drug effects , Serine/metabolism , Transcription Factor CHOP/metabolism
2.
Plant Sci ; 187: 39-48, 2012 May.
Article in English | MEDLINE | ID: mdl-22404831

ABSTRACT

Phosphorus is an essential element for all living cells, but its availability is often limiting in the soil. Plants have adapted to such limitation and respond to phosphorus deficiency. The soluble inorganic pyrophosphatases (PPase; EC 3.6.1.1) recycle the pyrophosphate produced by many biosynthetic reactions, and may play a role in the plant adaptation to phosphorus deficiency. In this work, three PPase mRNAs were identified from the Phaseolus vulgaris EST international database and their sequences were corroborated and completed using 3'RACE. After design and validation of the appropriate oligonucleotide primers, the PPase mRNA expression was measured by qRT-PCR in leaves, stems, and roots of bean plants grown with 1mM phosphate or under phosphate starvation. The plant tissues were classified according to their position on the plant, and some physiological signs of stress were recorded. qRT-PCR revealed changes in mRNA expression, but not for all isozymes under analysis, and not for all tissues. In addition, changes in the activity of some PPases were observed in zymograms. Our data are consistent with an important role for pyrophosphate in the adaptation of the plant to phosphate starvation.


Subject(s)
Adaptation, Physiological , Gene Expression , Inorganic Pyrophosphatase/metabolism , Phaseolus/enzymology , Phosphates/metabolism , Phosphorus/deficiency , Stress, Physiological , Base Sequence , DNA Primers , Diphosphates/metabolism , Gene Expression Regulation, Plant , Inorganic Pyrophosphatase/genetics , Isoenzymes , Phaseolus/genetics , Phaseolus/metabolism , Phosphorus/metabolism , Plant Structures , RNA, Messenger/metabolism , Soil , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...