Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Org Chem ; 17: 1360-1373, 2021.
Article in English | MEDLINE | ID: mdl-34136015

ABSTRACT

The white spot syndrome virus (WSSV), currently affecting cultured shrimp, causes substantial economic losses to the worldwide shrimp industry. An antiviral therapy using double-stranded RNA interference (dsRNAi) by intramuscular injection (IM) has proven the most effective shrimp protection against WSSV. However, IM treatment is still not viable for shrimp farms. The challenge is to develop an efficient oral delivery system that manages to avoid the degradation of antiviral RNA molecules. The present work demonstrates that VLPs (virus-like particles) allow efficient delivery of dsRNAi as antiviral therapy in shrimp. In particular, VLPs derived from a virus that infects plants, such as cowpea chlorotic mottle virus (CCMV), in which the capsid protein (CP) encapsidates the dsRNA of 563 bp, are shown to silence the WSSV glycoprotein VP28 (dsRNAvp28). In experimental challenges in vivo, the VLPs- dsRNAvp28 protect shrimp against WSSV up to 40% by oral administration and 100% by IM. The novel research demonstrates that plant VLPs, which avoid zoonosis, can be applied to pathogen control in shrimp and also other organisms, widening the application window in nanomedicine.

2.
Arch Virol ; 159(9): 2213-22, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24658782

ABSTRACT

White spot syndrome virus (WSSV) has a worldwide distribution and is considered one of the most pathogenic and devastating viruses to the shrimp industry. A few studies have explored the effect of WSSV on shrimp acclimated to low (5 practical salinity units [psu]) or high ([40 psu) salinity conditions. In this work, we analysed the physiological response of WSSV-infected Litopenaeus vannamei juveniles that were acclimated to different salinities (5, 15, 28, 34 and 54 psu). We evaluated the osmotic response and survival of the shrimp at different times after infection (0 to 48 hours), and we followed the expression levels of a viral gene (vp664) in shrimp haemolymph using real-time PCR. Our results indicate that the susceptibility of the shrimp to the virus increased at extreme salinities (5 and 54 psu), with higher survival rates at 15 and 28 psu, which were closer to the iso-osmotic point (24.7 psu, 727.5 mOsmol/kg). Acute exposure to the virus made the haemolymph less hyperosmotic at 5 and 15 psu and less hypo-osmotic at higher salinities ([28 psu). The capacity of white shrimp to osmoregulate, and thus survive, significantly decreased following WSSV infection. According to our results, extreme salinities (5 or 54 psu) are more harmful than seawater.


Subject(s)
Penaeidae/virology , White spot syndrome virus 1/isolation & purification , Animals , Hemolymph/virology , Osmotic Pressure , Penaeidae/drug effects , Penaeidae/physiology , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...