Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Oncol ; 40(27): 3132-3150, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35357885

ABSTRACT

PURPOSE: Primary plasma cell leukemia (pPCL) is an aggressive subtype of multiple myeloma, which is distinguished from newly diagnosed multiple myeloma (NDMM) on the basis of the presence of ≥ 20% circulating tumor cells (CTCs). A molecular marker for pPCL is currently lacking, which could help identify NDMM patients with high-risk PCL-like disease, despite not having been recognized as such clinically. METHODS: A transcriptomic classifier for PCL-like disease was bioinformatically constructed and validated by leveraging information on baseline CTC levels, tumor burden, and tumor transcriptomics from 154 patients with NDMM included in the Cassiopeia or HO143 trials and 29 patients with pPCL from the EMN12/HO129 trial. Its prognostic value was assessed in an independent cohort of 2,139 patients with NDMM from the HOVON-65/GMMG-HD4, HOVON-87/NMSG-18, EMN02/HO95, MRC-IX, Total Therapy 2, Total Therapy 3, and MMRF CoMMpass studies. RESULTS: High CTC levels were associated with the expression of 1,700 genes, independent of tumor burden (false discovery rate < 0.05). Of these, 54 genes were selected by leave-one-out cross-validation to construct a transcriptomic classifier representing PCL-like disease. This not only demonstrated a sensitivity of 93% to identify pPCL in the validation cohort but also classified 10% of NDMM tumors as PCL-like. PCL-like MM transcriptionally and cytogenetically resembled pPCL, but presented with significantly lower CTC levels and tumor burden. Multivariate analyses in NDMM confirmed the significant prognostic value of PCL-like status in the context of Revised International Staging System stage, age, and treatment, regarding both progression-free (hazard ratio, 1.64; 95% CI, 1.30 to 2.07) and overall survival (hazard ratio, 1.89; 95% CI, 1.42 to 2.50). CONCLUSION: pPCL was identified on the basis of a specific tumor transcriptome, which was also present in patients with high-risk NDMM, despite not being clinically leukemic. Incorporating PCL-like status into current risk models in NDMM may improve prognostic accuracy.


Subject(s)
Leukemia, Plasma Cell , Multiple Myeloma , Humans , Leukemia, Plasma Cell/genetics , Multiple Myeloma/drug therapy , Prognosis , Transcriptome , Treatment Outcome
2.
Int J Lab Hematol ; 44(1): 127-134, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34448362

ABSTRACT

OBJECTIVES: Typically, prognostic capability of gene expression profiling (GEP) is studied in the context of clinical trials, for which 50%-80% of patients are not eligible, possibly limiting the generalizability of findings to routine practice. Here, we evaluate GEP analysis outside clinical trials, aiming to improve clinical risk assessment of multiple myeloma (MM) patients. METHODS: A total of 155 bone marrow samples from MM patients were collected from which RNA was analyzed by microarray. Sixteen previously developed GEP-based markers were evaluated, combined with survival data, and studied using Cox proportional hazard regression. RESULTS: Gene expression profiling-based markers SKY92 and the PR-cluster were shown to be independent prognostic factors for survival, with hazard ratios and 95% confidence interval of 3.6 [2.0-6.8] (P < .001) and 5.8 [2.7-12.7] (P < .01) for overall survival (OS). A multivariate model proved only SKY92 and the PR-cluster to be independent prognostic factors compared to cytogenetic high-risk patients, the International Staging System (ISS), and revised ISS. A substantial number of high-risk individuals could be further identified when SKY92 was added to the cytogenetic, ISS, or R-ISS. In the cytogenetic standard-risk group, ISS I/II, and R-ISS I/II, 13%, 23%, and 23% of patients with adverse survivals were identified. CONCLUSIONS: For the first time, this study confirmed the prognostic value of GEP markers outside clinical trials. Conventional prognostic models to define high-risk MM are improved by the incorporation of GEP markers.


Subject(s)
Biomarkers, Tumor , Gene Expression Profiling , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Transcriptome , Bone Marrow Cells/metabolism , Disease Management , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/therapy , Neoplasm Staging , Pharmacogenomic Variants , Prognosis , Proportional Hazards Models , Retrospective Studies
4.
Angiogenesis ; 24(3): 677-693, 2021 08.
Article in English | MEDLINE | ID: mdl-33770321

ABSTRACT

Endothelial barrier disruption and vascular leak importantly contribute to organ dysfunction and mortality during inflammatory conditions like sepsis and acute respiratory distress syndrome. We identified the kinase Arg/Abl2 as a mediator of endothelial barrier disruption, but the role of Arg in endothelial monolayer regulation and its relevance in vivo remain poorly understood. Here we show that depletion of Arg in endothelial cells results in the activation of both RhoA and Rac1, increased cell spreading and elongation, redistribution of integrin-dependent cell-matrix adhesions to the cell periphery, and improved adhesion to the extracellular matrix. We further show that Arg is activated in the endothelium during inflammation, both in murine lungs exposed to barrier-disruptive agents, and in pulmonary microvessels of septic patients. Importantly, Arg-depleted endothelial cells were less sensitive to barrier-disruptive agents. Despite the formation of F-actin stress fibers and myosin light chain phosphorylation, Arg depletion diminished adherens junction disruption and intercellular gap formation, by reducing the disassembly of cell-matrix adhesions and cell retraction. In vivo, genetic deletion of Arg diminished vascular leak in the skin and lungs, in the presence of a normal immune response. Together, our data indicate that Arg is a central and non-redundant regulator of endothelial barrier integrity, which contributes to cell retraction and gap formation by increasing the dynamics of adherens junctions and cell-matrix adhesions in a Rho GTPase-dependent fashion. Therapeutic inhibition of Arg may provide a suitable strategy for the treatment of a variety of clinical conditions characterized by vascular leak.


Subject(s)
Extracellular Matrix/metabolism , Gap Junctions/enzymology , Human Umbilical Vein Endothelial Cells/enzymology , Protein-Tyrosine Kinases/metabolism , Pulmonary Alveoli/enzymology , Animals , Cell Adhesion/genetics , Enzyme Activation , Extracellular Matrix/genetics , Gap Junctions/genetics , Humans , Inflammation/enzymology , Inflammation/genetics , Mice , Mice, Knockout , Protein-Tyrosine Kinases/genetics
5.
J Cell Sci ; 133(3)2020 02 12.
Article in English | MEDLINE | ID: mdl-31964713

ABSTRACT

Endothelial YAP/TAZ (YAP is also known as YAP1, and TAZ as WWTR1) signaling is crucial for sprouting angiogenesis and vascular homeostasis. However, the underlying molecular mechanisms that explain how YAP/TAZ control the vasculature remain unclear. This study reveals that the focal adhesion protein deleted-in-liver-cancer 1 (DLC1) is a direct transcriptional target of the activated YAP/TAZ-TEAD complex. We find that substrate stiffening and VEGF stimuli promote expression of DLC1 in endothelial cells. In turn, DLC1 expression levels are YAP and TAZ dependent, and constitutive activation of YAP is sufficient to drive DLC1 expression. DLC1 is needed to limit F-actin fiber formation, integrin-based focal adhesion lifetime and integrin-mediated traction forces. Depletion of endothelial DLC1 strongly perturbs cell polarization in directed collective migration and inhibits the formation of angiogenic sprouts. Importantly, ectopic expression of DLC1 is sufficient to restore migration and angiogenic sprouting in YAP-depleted cells. Together, these findings point towards a crucial and prominent role for DLC1 in YAP/TAZ-driven endothelial adhesion remodeling and collective migration during angiogenesis.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Adaptor Proteins, Signal Transducing , Endothelial Cells , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Endothelial Cells/metabolism , GTPase-Activating Proteins/genetics , Humans , Morphogenesis , Neovascularization, Pathologic , Phosphoproteins/genetics , Phosphoproteins/metabolism , Signal Transduction , Tumor Suppressor Proteins/genetics
6.
Exp Cell Res ; 347(1): 161-170, 2016 09 10.
Article in English | MEDLINE | ID: mdl-27498166

ABSTRACT

In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps.


Subject(s)
Endothelium, Vascular/physiology , Gap Junctions/metabolism , Actins/metabolism , Biomechanical Phenomena/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Endothelium, Vascular/drug effects , Gap Junctions/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Thrombin/pharmacology
7.
Vascul Pharmacol ; 70: 45-54, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25869521

ABSTRACT

Rho kinase mediates the effects of inflammatory permeability factors by increasing actomyosin-generated traction forces on endothelial adherens junctions, resulting in disassembly of intercellular junctions and increased vascular leakage. In vitro, this is accompanied by the Rho kinase-driven formation of prominent radial F-actin fibers, but the in vivo relevance of those F-actin fibers has been debated, suggesting other Rho kinase-mediated events to occur in vascular leak. Here, we delineated the contributions of the highly homologous isoforms of Rho kinase (ROCK1 and ROCK2) to vascular hyperpermeability responses. We show that ROCK2, rather than ROCK1 is the critical Rho kinase for regulation of thrombin receptor-mediated vascular permeability. Novel traction force mapping in endothelial monolayers, however, shows that ROCK2 is not required for the thrombin-induced force enhancements. Rather, ROCK2 is pivotal to baseline junctional tension as a novel mechanism by which Rho kinase primes the endothelium for hyperpermeability responses, independent from subsequent ROCK1-mediated contractile stress-fiber formation during the late phase of the permeability response.


Subject(s)
Capillary Permeability , Endothelial Cells/enzymology , Intercellular Junctions/enzymology , rho-Associated Kinases/metabolism , Animals , Capillary Permeability/drug effects , Cells, Cultured , Electric Impedance , Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Intercellular Junctions/drug effects , Mice, Inbred C57BL , Mice, Transgenic , Protein Kinase Inhibitors/pharmacology , RNA Interference , Signal Transduction , Stress Fibers/enzymology , Thrombin/pharmacology , Time Factors , Transfection , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/genetics
8.
Cell Tissue Res ; 355(3): 557-76, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24633925

ABSTRACT

Although the endothelium is an extremely thin single-cell layer, it performs exceedingly well in preventing blood fluids from leaking into the surrounding tissues. However, specific pathological conditions can affect this cell layer, compromising the integrity of the barrier. Vascular leakage is a hallmark of many cardiovascular diseases and despite its medical importance, no specialized therapies are available to prevent it or reduce it. Small guanosine triphosphatases (GTPases) of the Rho family are known to be key regulators of various aspects of cell behavior and studies have shown that they can exert both positive and negative effects on endothelial barrier integrity. Moreover, extracellular matrix stiffness has now been implicated in the regulation of Rho-GTPase signaling, which has a direct impact on the integrity of endothelial junctions. However, knowledge about both the precise mechanism of this regulation and the individual contribution of the specific regulatory proteins remains fragmentary. In this review, we discuss recent findings concerning the balanced activities of Rho-GTPases and, in particular, aspects of the regulation of the endothelial barrier. We highlight the role of Rho-GTPases in the intimate relationships between biomechanical forces, microenvironmental influences and endothelial intercellular junctions, which are all interwoven in a beautiful filigree-like fashion.


Subject(s)
Endothelial Cells/physiology , Endothelium, Vascular/physiology , rho GTP-Binding Proteins/metabolism , Animals , Capillary Permeability , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...