Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 55(8): 4324-4331, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33760596

ABSTRACT

Criticality and supply risk models seek to address concerns of potential disruption to global metal supply. These models need to incorporate disruption events that arise from within the mining industry's market structure. In this paper, we review what we refer to as events of "mine life cycle disruption". These include project abandonments, premature closures, care and maintenance, and ownership changes. Life cycle disruptions not only cause production disruptions but also embed social and environmental risks in global metal markets. They arise from the highly variable business environment in which the resources sector operates. Changing commodity prices directly influence mining revenues and drive decisions on whether to halt or push forward a project. While some disruptions are involuntary and induced by external economic conditions, others are purposefully triggered by certain mining companies that use them to their advantage. We examine the frequency of these disruptions based on a contemporary global inventory of 35,000 mining projects and present the findings against recent developments in the research literature. We conclude that life cycle disruption events are an important consideration in balancing the demand for metals and the social and environmental impacts of mining and propose pathways for managing these events and their effects.


Subject(s)
Mining , Ownership , Animals , Environment , Life Cycle Stages , Metals
2.
Nat Commun ; 11(1): 4174, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32873789

ABSTRACT

Renewable energy production is necessary to halt climate change and reverse associated biodiversity losses. However, generating the required technologies and infrastructure will drive an increase in the production of many metals, creating new mining threats for biodiversity. Here, we map mining areas and assess their spatial coincidence with biodiversity conservation sites and priorities. Mining potentially influences 50 million km2 of Earth's land surface, with 8% coinciding with Protected Areas, 7% with Key Biodiversity Areas, and 16% with Remaining Wilderness. Most mining areas (82%) target materials needed for renewable energy production, and areas that overlap with Protected Areas and Remaining Wilderness contain a greater density of mines (our indicator of threat severity) compared to the overlapping mining areas that target other materials. Mining threats to biodiversity will increase as more mines target materials for renewable energy production and, without strategic planning, these new threats to biodiversity may surpass those averted by climate change mitigation.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources/statistics & numerical data , Mining/statistics & numerical data , Renewable Energy/adverse effects , Spatial Analysis
3.
Nat Commun ; 11(1): 4823, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973153

ABSTRACT

Environmental, social and governance pressures should feature in future scenario planning about the transition to a low carbon future. As low-carbon energy technologies advance, markets are driving demand for energy transition metals. Increased extraction rates will augment the stress placed on people and the environment in extractive locations. To quantify this stress, we develop a set of global composite environmental, social and governance indicators, and examine mining projects across 20 metal commodities to identify the co-occurrence of environmental, social and governance risk factors. Our findings show that 84% of platinum resources and 70% of cobalt resources are located in high-risk contexts. Reflecting heightened demand, major metals like iron and copper are set to disturb more land. Jurisdictions extracting energy transition metals in low-risk contexts are positioned to develop and maintain safeguards against mining-related social and environmental risk factors.

4.
Environ Sci Technol ; 53(18): 10571-10579, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31432668

ABSTRACT

Rising consumer demand is driving concerns around the "availability" and "criticality" of metals. Methodologies have emerged to assess the risks related to global metal supply. None have specifically examined the initial supply source: the mine site where primary ore is extracted. Environmental, social, and governance ("ESG") risks are critical to the development of new mining projects and the conversion of resources to mine production. In this paper, we offer a methodology that assesses the inherent complexities surrounding extractives projects. It includes eight ESG risk categories that overlay the locations of undeveloped iron, copper, and aluminum orebodies that will be critical to future supply. The percentage of global reserves and resources that are located in complex ESG contexts (i.e., with four or more concurrent medium-to-high risks) is 47% for iron, 63% for copper, and 88% for aluminum. This work contributes to research by providing a more complete understanding of source level constraints and risks to supply.


Subject(s)
Metals , Mining , Copper , Environmental Monitoring , Forecasting , Iron
SELECTION OF CITATIONS
SEARCH DETAIL
...