Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; : 111103, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852899

ABSTRACT

Gentiopicroside (Gp) and swertiamarin (Sm), secoiridoid glycosides commonly found in plants of the Gentianaceae family, differ in one functional group. They exhibit promising cytotoxic effects in cancer cell lines and overall protective outcomes, marking them as promising molecules for developing novel pharmaceuticals. To investigate potential variations in cellular sensitivity to compounds of similar molecular structures, we analyzed the mode of Gp and Sm induced cell death in human peripheral blood mononuclear cells (PBMCs) after 48 hours of treatment. The lowest tested concentration that significantly reduces cell viability, 50 µM, was applied. Oxidative stress parameters were estimated by measuring the levels of prooxidative/antioxidative balance, lipid peroxidation products, and 8-oxo-7,8-dihydro-2-deoxyguanosine, while gene expression of DNA repair enzymes was evaluated by employing quantitative real-time PCR. Cellular morphology was analyzed by fluorescent microscopy, and immunoblot analysis of apoptosis and necroptosis-related proteins was used to assess the type of cell death induced by the treatments. The discriminatory impact of Gp/Sm treatments on apoptosis and necroptosis-induced cell death was evaluated by monitoring the cell survival in co-treatment with specific cell death inhibitors. Obtained results show greater cytotoxicity of Gp than Sm suggesting that variations in the molecular structures of the tested compounds can substantially affect their biological effects. Gp/Sm co-treatment with apoptosis and necroptosis inhibitors revealed a distinct, albeit non-specific mechanism of PBMCs cell death. Although the therapeutic may not directly cause a specific type of cell death, its extent can be pivotal in assessing the safety of therapeutic application and developing phytopharmaceuticals with improved features. Since phytopharmaceuticals affect all exposed cells, identification of cytotoxic mechanisms on PBMCs after Gp and Sm treatment is important for addressing the formulation and dosage of potential phytopharmaceuticals.

2.
Pharmaceutics ; 16(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794333

ABSTRACT

The literature data emphasize that nanoparticles might improve the beneficial effects of near-infrared light (NIR) on wound healing. This study investigates the mechanisms of the synergistic wound healing potential of NIR light and silver metal-organic frameworks combined with nitrogen- and sulfur-doped carbon dots (AgMOFsN-CDs and AgMOFsS-CDs, respectively), which was conducted by testing the fibroblasts viability, scratch assays, biochemical analysis, and synchrotron-based Fourier transform infrared (SR-FTIR) cell spectroscopy and imaging. Our findings reveal that the combined treatment of AgMOFsN-CDs and NIR light significantly increases cell viability to nearly 150% and promotes cell proliferation, with reduced interleukin-1 levels, suggesting an anti-inflammatory response. SR-FTIR spectroscopy shows this combined treatment results in unique protein alterations, including increased α-helix structures and reduced cross-ß. Additionally, protein synthesis was enhanced upon the combined treatment. The likely mechanism behind the observed changes is the charge-specific interaction of N-CDs from the AgMOFsN-CDs with proteins, enhanced by NIR light due to the nanocomposite's optical characteristics. Remarkably, the complete wound closure in the in vitro scratch assay was achieved exclusively with the combined NIR and AgMOFsN-CDs treatment, demonstrating the promising application of combined AgMOFsN-CDs with NIR light photodynamic therapy in regenerative nanomedicine and tissue engineering.

3.
Methods Mol Biol ; 991: 315-23, 2013.
Article in English | MEDLINE | ID: mdl-23546681

ABSTRACT

Carbon nanotubes are unique one-dimensional macromolecules with promising application in biology and medicine. Since their toxicity is still under debate, here we describe an investigation of genotoxic properties of purified single-walled carbon nanotubes (SWCNT), multiwall carbon nanotubes (MWCNT), and amide-functionalized purified SWCNT. We used two different cell systems: cultured human lymphocytes where we employed cytokinesis-block micronucleus test and human fibroblasts where we investigate the induction of DNA double-strand breaks (DSBs) employing H2AX phosphorylation assay.


Subject(s)
Mutagenicity Tests , Nanotubes, Carbon/toxicity , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...