Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38063742

ABSTRACT

The integration of metal oxide nanomaterials with mesoporous silica is a promising approach to exploiting the advantages of both types of materials. Traditional synthesis methods typically require multiple steps. This work instead presents a fast, one-step, template-free method for the synthesis of metal oxides homogeneously dispersed within mesoporous silica, including oxides of W, Ti, Nb, Ta, Sn, and Mo. These composites have tunable metal oxide contents, large surface areas, and wide mesopores. The combination of Nb2O5 nanoparticles (NPs) with SiO2 results in an increased surface area and a larger number of acid sites compared to pure Nb2O5 NPs. The surface texture and acidity of the silica-niobia composites can be tuned by adjusting the Nb/Si molar ratio. Moreover, the silica provides protection to the niobia NPs, preventing sintering during thermal treatment at 400 °C. The silica-niobia materials exhibit superior performance as catalysts in the aldol condensation of furfural (Fur) with acetone compared to pure niobia, leading to an up to 62% in product yield. Additionally, these catalysts show remarkable stability, retaining their performance over multiple runs. This work demonstrates the potential of the proposed synthesis approach for preparing more sustainable, high-performance, durable, and stable nanoscale metal oxide-based catalysts with a tunable composition, surface area, and active site density.

2.
ACS Biomater Sci Eng ; 9(4): 1909-1918, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36996427

ABSTRACT

Metal-organic frameworks (MOFs) have high potential as nanoplatforms for the storage and delivery of therapeutic gasotransmitters or gas-releasing molecules. The aim of the present study was to open an investigation into the viability of tricarbonyl-pyrazine-molybdenum(0) MOFs as carbon monoxide-releasing materials (CORMAs). A previous investigation found that the reaction of Mo(CO)6 with excess pyrazine (pyz) in a sealed ampoule gave a mixture comprising a major triclinic phase with pyz-occupied hexagonal channels, formulated as fac-Mo(CO)3(pyz)3/2·1/2pyz (Mo-hex), and a minor dense cubic phase, formulated as fac-Mo(CO)3(pyz)3/2 (Mo-cub). In the present work, an open reflux method in toluene has been optimized for the large-scale synthesis of the pure Mo-cub phase. The crystalline solids Mo-hex and Mo-cub were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), FT-IR and FT-Raman spectroscopies, and 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy. The release of CO from the MOFs was studied by the deoxy-myoglobin (deoxy-Mb)/carbonmonoxy-myoglobin (MbCO) UV-vis assay. Mo-hex and Mo-cub release CO upon contact with a physiological buffer in the dark, delivering 0.35 and 0.22 equiv (based on Mo), respectively, after 24 h, with half-lives of 3-4 h. Both materials display high photostability such that the CO-releasing kinetics is not affected by irradiation of the materials with UV light. These materials are attractive as potential CORMAs due to the slow release of a high CO payload. In the solid-state and under open air, Mo-cub underwent almost complete decarbonylation over a period of 4 days, corresponding to a theoretical CO release of 10 mmol per gram of material.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Carbon Monoxide/chemistry , Molybdenum/chemistry , Myoglobin/chemistry , Spectroscopy, Fourier Transform Infrared , Pyrazines
3.
Front Chem ; 10: 1006981, 2022.
Article in English | MEDLINE | ID: mdl-36247668

ABSTRACT

The biomass-derived platform chemicals furfural and 5-(hydroxymethyl)furfural (HMF) may be converted to α-angelica lactone (AnL) and levulinic acid (LA). Presently, LA (synthesized from carbohydrates) has several multinational market players. Attractive biobased oxygenated fuel additives, solvents, etc., may be produced from AnL and LA via acid and reduction chemistry, namely alkyl levulinates and γ-valerolactone (GVL). In this work, hierarchical hafnium-containing multifunctional Linde type L (LTL) related zeotypes were prepared via top-down strategies, for the chemical valorization of LA, AnL and HMF via integrated catalytic transfer hydrogenation (CTH) and acid reactions in alcohol medium. This is the first report of CTH applications (in general) of LTL related materials. The influence of the post-synthesis treatments/conditions (desilication, dealumination, solid-state impregnation of Hf or Zr) on the material properties and catalytic performances was studied. AnL and LA were converted to 2-butyl levulinate (2BL) and GVL in high total yields of up to ca. 100%, at 200°C, and GVL/2BL molar ratios up to 10. HMF conversion gave mainly the furanic ethers 5-(sec-butoxymethyl)furfural and 2,5-bis(sec-butoxymethyl)furan (up to 63% total yield, in 2-butanol at 200°C/24 h). Mechanistic, reaction kinetics and material characterization studies indicated that the catalytic results depend on a complex interplay of different factors (material properties, type of substrate). The recovered-reused solids performed steadily.

4.
Molecules ; 26(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34885785

ABSTRACT

Heterogeneous catalysis, which has served well the petrochemical industry, may valuably contribute towards a bio-based economy by sustainably enabling selective reactions to renewable chemicals. Carbohydrate-containing matter may be obtained from various widespread sources and selectively converted to furanic platform chemicals: furfural (Fur) and 5-(hydroxymethyl)furfural (Hmf). Valuable bioproducts may be obtained from these aldehydes via catalytic transfer hydrogenation (CTH) using alcohols as H-donors under relatively moderate reaction conditions. Hafnium-containing TUD-1 type catalysts were the first of ordered mesoporous silicates explored for the conversion of Fur and Hmf via CTH/alcohol strategies. The materials promoted CTH and acid reactions leading to the furanic ethers. The bioproducts spectrum was broader for the reaction of Fur than of Hmf. A Fur reaction mechanism based on literature data was discussed and supported by kinetic modelling. The influence of the Hf loading and reaction conditions (catalyst load, type of alcohol H-donor, temperature, initial substrate concentration) on the reaction kinetics was studied. The reaction conditions were optimized to maximize the yields of 2-(alkoxymethyl)furan ethers formed from Fur; up to 63% yield was reached at 88% Fur conversion, 4 h/150 °C, using Hf-TUD-1(75), which was a stable catalyst. The Hf-TUD-1(x) catalysts promoted the selective conversion of Hmf to bis(2-alkoxymethyl)furan; e.g., 96% selectivity at 98% Hmf conversion, 3 h/170 °C for Hf-TUD-1(50).

6.
Mater Sci Eng C Mater Biol Appl ; 124: 112053, 2021 May.
Article in English | MEDLINE | ID: mdl-33947547

ABSTRACT

A carbon monoxide-releasing material (CORMA) has been prepared by inclusion of molybdenum hexacarbonyl in a hafnium-based metal-organic framework (MOF) with the UiO-66 architecture. Mo(CO)6 was adsorbed from solution to give supported materials containing 6.0-6.6 wt% Mo. As confirmed by powder X-ray diffraction (PXRD) and SEM coupled with energy dispersive X-ray spectroscopy, neither the crystallinity nor the morphology of the porous host was affected by the loading process. While the general shape of the N2 physisorption isotherms (77 K) did not change significantly after encapsulation of Mo(CO)6, the micropore volume decreased by ca. 20%. Thermogravimetric analysis of the as-prepared materials revealed a weight loss step around 160 °C associated with the decomposition of Mo(CO)6 to subcarbonyl species. Confirmation for the presence of encapsulated Mo(CO)6 complexes was provided by FT-IR and 13C{1H} cross-polarization magic-angle spinning NMR spectroscopies. To test the capability of these materials to behave as CORMAs and transfer CO to heme proteins, the standard myoglobin (Mb) assay was used. While stable in the dark, photoactivation with low-power UV light (365 nm) liberated CO from the encapsulated hexacarbonyl molecules in Mo(6.0)/UiO-66(Hf), leading to a maximum amount of 0.26 mmol CO released per gram of material. Under the simulated physiological conditions of the Mb assay (37 °C, pH 7.4 buffer), minimal leaching of molybdenum occurred, PXRD showed only slight amorphization, and FT-IR spectroscopy confirmed the high chemical stability of the MOF host.


Subject(s)
Gasotransmitters , Metal-Organic Frameworks , Carbon Monoxide , Hafnium , Molybdenum , Spectroscopy, Fourier Transform Infrared
7.
Dalton Trans ; 49(13): 3989-3998, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-31951240

ABSTRACT

This work reports the synthesis and multifunctionality of 2D layered coordination polymers formulated as [Ln2(H3nmp)2]·xH2O (1, where Ln = Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+ and Y3+) (x = 1 to 4). We describe detailed synthesis of the materials using various methods [typical hydrothermal reaction (HT), microwave-assisted synthesis (MWAS) and one-pot method (OP)], while discussing the various crystal morphologies which can be fine tuned by varying systematically the conditions. We further explore the multifunctionality of this material by studying its heterogeneous catalytic activity in the ring opening of styrene oxide, its photoluminescence behaviour and its cytotoxicity. A conversion of 88%/100% yield at 4 h/24 h reaction respectively, with excellent selectivity towards 2-methoxy-2-phenylethanol product (100%) was observed. Photoluminescence properties of the optically-active [Eu2(H3nmp)2]·xH2O (1Eu) and the mixed-lanthanide [(Gd0.95Eu0.5)2(H3nmp)2]·xH2O (1GdEu), on the other hand, show potential use for UV-to-visible light converters, with lifetimes of 2.31 ± 0.01 and 2.61 ± 0.01 ms at ambient temperature for 1Eu and 1GdEu samples. Preliminary cytotoxic studies showed no effects on metabolic activity of both in vitro human epithelial kidney (HK-2) and human hepatocellular carcinoma (HepG2) cell lines. A reduction of NR uptake was, however, observed indicating some cytotoxic effect on lysosomal activity.


Subject(s)
Coordination Complexes/pharmacology , Lanthanoid Series Elements/pharmacology , Polymers/pharmacology , Cell Line , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Lanthanoid Series Elements/chemistry , Models, Molecular , Molecular Structure , Particle Size , Polymers/chemistry , Structure-Activity Relationship , Surface Properties
8.
Inorg Chem ; 58(24): 16424-16433, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31763830

ABSTRACT

3-(1,2,4-Triazol-4-yl)adamantane-1-carboxylic acid (tradcH), a heterobifunctional organic ligand in which carboxylic acid and 1,2,4-triazole groups are united through a rigid 1,3-adamantanediyl spacer, was employed for the synthesis of a MoVI oxide organic hybrid. The ligand crystallized from water as tradcH·H2O (1), possessing a two-dimensional hydrogen-bonding network, and from ethanol as a cyclic molecular solvate with the composition (tradcH)3·2EtOH (2). Treatment of tradcH with MoO3 under hydrothermal conditions afforded a new Mo trioxide hybrid, [MoO3(tradcH)]·H2O (3), which was structurally characterized. In 3, the molybdenum atoms form a polymeric zigzag chain of {µ2-O-MoO2}n which is supported by double triazole bridges, while the carboxylic acid termini are left uncoordinated. The coordination environment of the Mo centers appears as distorted cis-{MoN2O4} octahedra. The hybrid exhibits high thermal stability (up to 270 °C) and was employed for a relatively broad scope of catalytic oxidation reactions in the liquid phase. Its catalytic behavior may be compared to a reversible mutation, featuring the best sides of homogeneous and heterogeneous catalysis. The original solid material converts into soluble active species, and the latter revert to the original material upon completion of the catalytic reaction, precipitating and allowing straightforward catalyst separation/reuse (like a heterogeneous catalyst). This catalyst was explored for a chemical reaction scope covering sulfoxidation, oxidative alcohol dehydrogenation, aldehyde oxidation, and olefin epoxidation, using hydrogen peroxide as an eco-friendly oxidant that gives water as a coproduct.

9.
Dalton Trans ; 48(30): 11508-11519, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31292582

ABSTRACT

The reaction of the macrocyclic cavitand cucurbit[6]uril (CB[6]) and the diaqua complex [MoO2Cl2(H2O)2] in hydrochloric acid solution gave a water insoluble supramolecular compound with the general composition 2[MoO2Cl2(H2O)2]·CB[6]·xH2O·yHCl·z(CH3COCH3) (2). Single crystal X-ray diffraction (XRD) analysis revealed the presence of barrel-shape supramolecular entities, {CB[6]·10(H2O)}, aligned in layers which are shifted relative to adjacent layers to form a brick-like pattern. The CB[6]/water hydrogen-bonded entities further engage in intermolecular interactions with water, HCl and [MoO2Cl2(H2O)2] molecules to form a three-dimensional (3D) framework. Compound 2 was characterised by thermogravimetric analysis (TGA), IR and Raman vibrational spectroscopy, and 13C{1H} CP MAS NMR. The reference complex [MoO2Cl2(H2O)2]·(diglyme)2 (1) and compound 2 were studied for the oxidative catalytic conversion of olefins (cis-cyclooctene, cyclohexene and styrene) with aqueous H2O2 as oxidant. Using alcohols as solvents, 2 was employed in a one-pot two-stage strategy for converting olefins to alkoxy products, which involves oxidation (with H2O2) and acid chemistry. Mechanistic studies were carried out using different intermediates as substrates, and the type of solvent and substrate scope were investigated. The results demonstrated the ability of the CB[6]/MoVI supramolecular adduct to function as an acid-oxidation multifunctional catalyst, and its recovery and reuse via relatively simple procedures.

10.
Molecules ; 24(1)2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30597921

ABSTRACT

The molybdenum(0)-carbonyl-triazole complexes [Mo(CO)3(L)3] [L = 1,2,3-triazole (1,2,3-trz) or 1,2,4-triazole (1,2,4-trz)] have been prepared and examined as precursors to molybdenum(VI) oxide catalysts for the epoxidation of cis-cyclooctene. Reaction of the carbonyl complexes with the oxidant tert-butyl hydroperoxide (TBHP) (either separately or in situ) gives oxomolybdenum(VI) hybrid materials that are proposed to possess one-dimensional polymeric structures in which adjacent oxo-bridged dioxomolybdenum(VI) moieties are further linked by bidentate bridging triazole (trz) ligands. A pronounced ligand influence on catalytic performance was found and the best result (quantitative epoxide yield within 1 h at 70 °C) was obtained with the 1,2,3-triazole oxomolybdenum(VI) hybrid. Both molybdenum oxide-triazole compounds displayed superior catalytic performance in comparison with the known hybrid materials [MoO3(trz)0.5], which have different structures based on organic-inorganic perovskite-like layers. With aqueous H2O2 as the oxidant instead of TBHP, all compounds were completely soluble and active. A pronounced ligand influence on catalytic performance was only found for the hybrids [MoO3(trz)0.5], and only the 1,2,4-trz compound displayed reaction-induced self-precipitation behavior. An insight into the type of solution species that may be involved in the catalytic processes with these compounds was obtained by separately treating [MoO3(1,2,4-trz)0.5] with excess H2O2, which led to the crystallization of the complex (NH4)1.8(H3O)0.2[Mo2O2(µ2-O)(O2)4(1,2,4-trz)]·H2O. The single-crystal X-ray investigation of this complex reveals an oxo-bridged dinuclear structure with oxodiperoxo groups being further linked by a single triazole bridge.


Subject(s)
Alkenes/chemistry , Molybdenum/chemistry , Oxides/chemistry , Triazoles/chemistry , Catalysis , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Spectroscopy, Fourier Transform Infrared
11.
RSC Adv ; 8(29): 16294-16302, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-35542229

ABSTRACT

The synthesis of molybdenum(0) tricarbonyl and tetracarbonyl complexes of the form [Mo(CO)3(ptapzpy)Br] (1) and cis-[Mo(CO)4(ptapzpy)]Br (2) is reported, where ptapzpy = 2-(1-propyltrimethylammonium-3-pyrazolyl)pyridine. Preparation of these derivatives was accomplished either through thermal replacement of CO in Mo(CO)6 (for 1) or substitution under milder conditions of piperidine ligands in the precursor cis-[Mo(CO)4(pip)2] (for 2). The crystal structures of the ligand [ptapzpy]Br and complexes 1 and 2 were determined. Thermal treatment of 2 at 125-150 °C leads to mono decarbonylation and formation of 1. On the other hand, oxidative decarbonylation of 1 and 2 by reaction with tert-butylhydroperoxide (TBHP, 10 equiv.) gives a molybdenum oxide hybrid material formulated as [Mo3O9([ptapzpy]Br)2]·nH2O (3), which was characterised by FT-IR and Raman spectroscopy, thermogravimetric analysis, and 13C{1H} CP MAS NMR spectroscopy. Compounds 1-3 were effective (pre)catalysts for the epoxidation of cis-cyclooctene at 55 °C with aqueous H2O2 or TBHP (slightly better results were obtained with the former). The characterisation of the Mo-containing solids isolated after the catalytic reaction showed that poorly soluble ß-octamolybdate salts, (L) x [Mo8O26], were formed from 1-3 with TBHP and from 1 with H2O2, while soluble oxoperoxo species were formed from 3 with H2O2. These findings helped to explain the different catalytic performances obtained.

12.
Inorg Chem ; 56(8): 4380-4394, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28368105

ABSTRACT

Three organic ligands bearing 1,2,4-triazolyl donor moieties, (S)-4-(1-phenylpropyl)-1,2,4-triazole (trethbz), 4-(1,2,4-triazol-4-yl)benzoic acid (trPhCO2H), and 3-(1H-imidazol-4-yl)-2-(1,2,4-triazol-4-yl)propionic acid (trhis), were prepared to evaluate their coordination behavior in the development of molybdenum(VI) oxide organic hybrids. Four compounds, [Mo2O6(trethbz)2]·H2O (1), [Mo4O12(trPhCO2H)2]·0.5H2O (2a), [Mo4O12(trPhCO2H)2]·H2O (2b), and [Mo8O25(trhis)2(trhisH)2]·2H2O (3), were synthesized and characterized. The monofunctional tr-ligand resulted in the formation of a zigzag chain [Mo2O6(trethbz)2] built up from cis-{MoO4N2} octahedra united through common µ2-O vertices. Employing the heterodonor ligand with tr/-CO2H functions afforded either layer or ribbon structures of corner- or edge-sharing {MoO5N} polyhedra (2a or 2b) stapled by tr-links in axial positions, whereas -CO2H groups remained uncoordinated. The presence of the im-heterocycle as an extra function in trhis facilitated formation of zwitterionic molecules with a protonated imidazolium group (imH+) and a negatively charged -CO2- group, whereas the tr-fragment was left neutral. Under the acidic hydrothermal conditions used, the organic ligand binds to molybdenum atoms either through [N-N]-tr or through both [N-N]-tr and µ2-CO2- units, which occur in protonated bidentate or zwitterionic tetradentate forms (trhisH+ and trhis, respectively). This leads to a new zigzag subtopological motif (3) of negatively charged polyoxomolybdate {Mo8O25}n2n- consisting of corner- and edge-sharing cis-{MoO4N2} and {MoO6} octahedra, while the tetradentate zwitterrionic trhis species connect these chains into a 2D net. Electronic spectra of the compounds showed optical gaps consistent with semiconducting behavior. The compounds were investigated as epoxidation catalysts via the model reactions of achiral and prochiral olefins (cis-cyclooctene and trans-ß-methylstyrene) with tert-butylhydroperoxide. The best-performing catalyst (1) was explored for the epoxidation of other olefins, including biomass-derived methyl oleate, methyl linoleate, and prochiral dl-limonene.

13.
Inorg Chem ; 56(3): 1193-1208, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28125229

ABSTRACT

Phosphonate- and yttrium-based metal-organic frameworks (MOFs), formulated as [Y(H5btp)]·5.5H2O (1), [Y(H5btp)]·2.5H2O (2), (H3O)[Y2(H5btp)(H4btp)]·H2O (3), and [Y(H5btp)]·H2O·0.5(MeOH) (4), were prepared using a "green" microwave-assisted synthesis methodology which promoted the self-assembly of the tetraphosphonic organic linker [1,1'-biphenyl]-3,3',5,5'-tetrayltetrakis(phosphonic acid) (H8btp) with Y3+ cations. This new family of functional materials, isolated in bulk quantities, exhibits a remarkable breathing effect. Structural flexibility was thoroughly studied by means of X-ray crystallography, thermogravimetry, variable-temperature X-ray diffraction, and dehydration and rehydration processes, ultimately evidencing a remarkable reversible single-crystal to single-crystal (SC-SC) transformation solely through the loss and gain of crystallization solvent molecules. Topologically, frameworks remained unaltered throughout this interconversion mechanism, with all compounds being binodal 6,6-connected network with a Schäfli symbol of {413.62}{48.66.8}. Results show that this is one of the most stable and thermally robust families of tetraphosphonate-based MOFs synthesized reported to date. Porous materials 2 and 3 were further studied to ascertain their performance as heterogeneous catalysts and proton conductors, respectively, with outstanding results being registered for both materials. Compound 2 showed a 94% conversion of benzaldehyde into (dimethoxymethyl)benzene after just 1 h of reaction, among the best results registered to date for MOF materials. On the other hand, the protonic conductivity of compound 3 at 98% of relative humidity (2.58 × 10-2 S cm-1) was among the highest registered among MOFs, with the great advantage of the material to be prepared using a simpler and sustainable synthesis methodology, as well as exhibiting a good stability at ambient conditions (temperature and humidity) over time when compared to others.

14.
Chemistry ; 22(37): 13136-46, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27505712

ABSTRACT

A positively charged lamellar coordination polymer based on a flexible triphosphonic acid linker is reported. [Gd(H4 nmp)(H2 O)2 ]Cl⋅2 H2 O (1) [H6 nmp=nitrilotris(methylenephosphonic acid)] was obtained by a one-pot approach by using water as a green solvent and by forcing the inclusion of additional acid sites by employing HCl in the synthesis. Compound 1 acts as a versatile heterogeneous acid catalyst with outstanding activity in organic reactions such as alcoholysis of styrene oxide, acetalization of benzaldehyde and cyclohexanaldehyde and ketalization of cyclohexanone. For all reaction systems, very high conversions were reached (92-97 %) in only 15-30 min under mild conditions (35 °C, atmospheric pressure). The coordination polymer exhibits a protonic conductivity of 1.23×10(-5)  S cm(-1) at 98 % relative humidity and 40 °C.

15.
Org Biomol Chem ; 14(16): 3873-7, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27035403

ABSTRACT

Metal-free cucurbit[7]uril (CB7) solid-state assemblies promote acid-catalysed alcoholysis of aliphatic and aromatic epoxides under mild conditions to give ß-alkoxy alcohols, which are important intermediates for the synthesis of a vast range of compounds such as bioactive pharmaceuticals. The catalytic process is heterogeneous and the catalyst can be reused in consecutive runs without any reactivation treatment. The acid species responsible for the catalytic activity of CB7 may be entrapped hydronium ions.

16.
Inorg Chem ; 54(17): 8327-38, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26280712

ABSTRACT

A large family of bifunctional 1,2,4-triazole molecular tectons (tr) has been explored for engineering molybdenum(VI) oxide hybrid solids. Specifically, tr ligands bearing auxiliary basic or acidic groups were of the type amine, pyrazole, 1H-tetrazole, and 1,2,4-triazole. The organically templated molybdenum(VI) oxide solids with the general compositions [MoO3(tr)], [Mo2O6(tr)], and [Mo2O6(tr)(H2O)2] were prepared under mild hydrothermal conditions or by refluxing in water. Their crystal structures consist of zigzag chains, ribbons, or helixes of alternating cis-{MoO4N2} or {MoO5N} polyhedra stapled by short [N-N]-tr bridges that for bitriazole ligands convert the motifs into 2D or 3D frameworks. The high thermal (235-350 °C) and chemical stability observed for the materials makes them promising for catalytic applications. The molybdenum(VI) oxide hybrids were successfully explored as versatile oxidation catalysts with tert-butyl hydroperoxide (TBHP) or aqueous H2O2 as an oxygen source, at 70 °C. Catalytic performances were influenced by the different acidic-basic properties and steric hindrances of coordinating organic ligands as well as the structural dimensionality of the hybrid.

17.
Inorg Chem ; 54(20): 9690-703, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26134888

ABSTRACT

The tungsten oxide/2,2'-bipyridine hybrid material [WO3(2,2'-bpy)]·nH2O (n = 1-2) (1) has been prepared in near quantitative yield by the reaction of H2WO4, 2,2'-bpy, and H2O in the mole ratio of ca. 1:2:700 at 160 °C for 98 h in a rotating Teflon-lined digestion bomb. The solid-state structure of 1 was solved and refined through Rietveld analysis of high-resolution synchrotron X-ray diffraction data collected for the microcrystalline powder. The material, crystallizing in the orthorhombic space group Iba2, is composed of a one-dimensional organic-inorganic hybrid polymer, ∞(1)[WO3(2,2'-bpy)], topologically identical to that found in the previously reported anhydrous phases [MO3(2,2'-bpy)] (M = Mo, W). While in the latter the N,N'-chelated 2,2'-bpy ligands of adjacent corner-shared {MO4N2} octahedra are positioned on the same side of the 1D chain, in 1 the 2,2'-bpy ligands alternate above and below the chain. The catalytic behavior of compound 1 for the epoxidation of cis-cyclooctene was compared with that for several other tungsten- or molybdenum-based (pre)catalysts, including the hybrid polymer [MoO3(2,2'-bpy)]. While the latter exhibits superior performance when tert-butyl hydroperoxide (TBHP) is used as the oxidant, compound 1 is superior when aqueous hydrogen peroxide is used, allowing near-quantitative conversion of the olefin to the epoxide. With H2O2, compounds 1 and [MoO3(2,2'-bpy)] act as sources of soluble active species, namely, the oxodiperoxo complex [MO(O2)2(2,2'-bpy)], which is formed in situ. Compounds 1 and [WO(O2)2(2,2'-bpy)] (2) were further tested in the epoxidation of cyclododecene, trans-2-octene, 1-octene, (R)-limonene, and styrene. The structure of 2 was determined by single-crystal X-ray diffraction and found to be isotypical with the molybdenum analogue.

18.
Chem Commun (Camb) ; 51(54): 10807-10, 2015 Jul 11.
Article in English | MEDLINE | ID: mdl-25966779

ABSTRACT

Rationalization of the synthetic conditions allowed the predictable fast sustainable preparation of [La2(H3nmp)2(H2O)4]·4.5H2O having a 1D coordination polymer. The material exhibits a remarkable chemical stability, can be converted into other layered compounds, and is an excellent catalyst surpassing other related materials.

19.
Dalton Trans ; 44(2): 488-92, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25420939

ABSTRACT

A heterotetranuclear Na2Eu2 complex with uncommon photoluminescence properties is reported. The complex exhibits good emission efficiency at ambient temperature, coupled with strong temperature dependence of the emission intensity and lifetime in the 273-333 K range, all of which are key features for non-contact luminescence-based thermometers capable of sensing and imaging temperatures in the physiological range.

20.
Inorg Chem ; 53(19): 10112-21, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25207750

ABSTRACT

The multicomponent mixed-metal Cu(II)/Mo(VI) oxides/1,3-bis(1,2,4-triazol-4-yl)adamantane (tr2ad) system was thoroughly studied employing a compositional diagram approach. The concept allowed us to prepare three layered copper-molybdate hybrid solids [Cu(II)2(tr2ad)4](Mo8O26) (1), [Cu4(II)(µ4-O)(tr2ad)2(MoO4)3]·7.5H2O (2), and [Cu(I)2(tr2ad)2](Mo2O7)·H2O (3), and to elucidate the relationship between initial reagent concentration/stoichiometry and the stability of the resultant structural motifs. Compounds 1 and 2 were found to dominate throughout a wide crystallization range of the concentration triangle, whereas compound 3 was formed by redox processes in the narrow crystallization area having a high excess of Cu(OAc)2·H2O. Independent experiments carried out with Cu(OAc)2 and (NH4)6Mo7O24 in the absence of tr2ad, under the same conditions, revealed the formation of low-valent and bimetallic oxides, including Cu2O, MoO2, Cu(Mo3O10)·H2O, and Cu3(MoO4)2(OH)2. Compounds 1 and 2 show high thermal and chemical stability as examined as catalysts in the epoxidation of cis-cyclooctene and the oxidation of benzyl alcohol (BzOH) with different types of oxidants. The oxidation reaction of BzOH using tert-butyl hydroperoxide (TBHP) as the oxidant, in the presence of 1 or 2, led to benzaldehyde and benzoic acid (PhCO2H), with the latter being formed in up to 90% yield at 24 h. The results suggest that 1 and 2 may be favorable heterogeneous catalysts for the synthesis of PhCO2H. Whereas compound 1 only reveals a weak ferromagnetic coupling between neighboring Cu(II) centers (J = 0.41 cm(-1)), compound 2 shows distinct intracluster antiferromagnetic exchange interactions (J = -29.9 cm(-1), J' = -25.7 cm(-1)), which consequently results in a diamagnetic ground state.

SELECTION OF CITATIONS
SEARCH DETAIL
...