Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Genet Mol Biol ; 45(2): e20210287, 2022.
Article in English | MEDLINE | ID: mdl-35297941

ABSTRACT

Transposable elements are abundant and dynamic part of the genome, influencing organisms in different ways through their presence or mobilization, or by acting directly on pre- and post-transcriptional regulatory regions. We compared and evaluated the presence, structure, and copy number of three hAT superfamily transposons (hobo, BuT2, and mar) in five strains of Drosophila willistoni species. These D. willistoni strains are of different geographical origins, sampled across the north-south occurrence of this species. We used sequenced clones of the hAT elements in fluorescence in-situ hybridizations in the polytene chromosomes of three strains of D. willistoni. We also analyzed the structural characteristics and number of copies of these hAT elements in the 10 currently available sequenced genomes of the willistoni group. We found that hobo, BuT2, and mar were widely distributed in D. willistoni polytene chromosomes and sequenced genomes of the willistoni group, except for mar, which is restricted to the subgroup willistoni. Furthermore, the elements hobo, BuT2, and mar have different evolutionary histories. The transposon differences among D. willistoni strains, such as variation in the number, structure, and chromosomal distribution of hAT transposons, could reflect the genomic and chromosomal plasticity of D. willistoni species in adapting to highly variable environments.

2.
Genet Mol Biol ; 35(4 (suppl)): 966-79, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23411997

ABSTRACT

Drosophila willistoni (Insecta, Diptera) is considered a paradigm for evolutionary studies. Their chromosomes are characterized by multiple paracentric inversions that make it hard to identify and describe chromosomal polymorphisms. In the present report we attempted to systematize the description of all the 50 inversions found in the last three decades, since we have been studying the chromosomes of several individuals of 30 different populations, including the one used in the genome sequencing project (Gd-H4-1). We present the photographic register of 11 arrangements in the left arm of the X chromosome (XL), eight in the right arm (XR), 10 in the left arm of chromosome II (IIL), eight in its right arm (IIR) and 13 in chromosome III. This information also includes their breakpoints on the reference photomap. A clear geographic difference was detected in XL and XR, with different fixed arrangements depending on the origin of the population studied. Through the comparison of all X arrangements it was possible to infer the putative ancestral arrangements, i.e., those related to all the remaining arrangements through the small number of inversions that occurred in the past, which we will call XL-A and XR-A. In the autosomes (IIL/IIR and III), fixed inversions were detected, but most are segregating in different frequencies along the geographical distribution of the D. willistoni populations.

3.
Genet. mol. biol ; 30(1): 133-138, 2007. ilus, tab
Article in English | LILACS | ID: lil-445695

ABSTRACT

In an attempt to understand the dynamics of transposable elements (T'S) in the genome of host species, we investigated the distribution, representativeness and conservation of DNA sequences homologous to the Drosophila melanogaster gypsy retrotransposon in 42 drosophilid species. Our results extended the knowledge about the wide distribution of gypsy in the genus Drosophila, including several Neotropical species not previously studied. The gypsy-like sequences showed high divergence compared to the D. melanogaster gypsy element. Furthermore, the conservation of the restriction sites between gypsy sequences from phylogenetically unrelated species pointed to a more complex evolutionary picture, which includes the possibility of the horizontal transfer events already described for this retrotransposon.

4.
Genetica ; 126(1-2): 77-88, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16502086

ABSTRACT

The phylogenetic relationships among nine entities of Drosophila belonging to the D. willistoni subgroup were investigated by establishing the homologous chromosomal segments of IIR chromosome, Muller's element B (equivalent to chromosome 2L of D. melanogaster). The sibling species of the D. willistoni group investigated include D. willistoni, D. tropicalis tropicalis, D. tropicalis cubana, D. equinoxialis, D. insularis and four semispecies of the D. paulistorum complex. The phylogenetic relationships were based on the existence of segments in different triads of species, which could only be produced by overlapping inversions. Polytene banding similarity maps and break points of inversions between species are presented. The implications of the chromosomal data for the phylogeny of the species and comparisons with molecular data are discussed. The aim of this study is to produce phylogenetic trees depicting accurately the sequence of natural events that have occurred in the evolution of these sibling species.


Subject(s)
Biological Evolution , Chromosome Mapping , Chromosomes/genetics , Drosophila/genetics , Animals , Phylogeny
5.
Mol Biol Evol ; 21(10): 1831-42, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15175416

ABSTRACT

In an endeavor to contribute to the comprehension of the evolution of transposable elements (TEs) in the genome of host species, we investigated the phylogenetic relationships of sequences homologous to the retrotransposon gypsy of Drosophila melanogaster in 19 species of Drosophila, in Scaptodrosophila latifasciaeformis, and in Zaprionus indianus. This phylogenetic study was based on approximately 500 base pairs of the env gene. Our analyses showed considerable discrepancy between the phylogeny of gypsy elements and the relationship of their host species, and they allow us to infer a complex evolutionary pattern that could include ancestral polymorphism, vertical transmission, and several cases of horizontal transmission.


Subject(s)
Drosophilidae/genetics , Evolution, Molecular , Retroelements , Animals , Gene Transfer, Horizontal , Phylogeny
6.
Genet. mol. biol ; 22(2): 205-11, jun. 1999. tab, ilus
Article in English | LILACS | ID: lil-242202

ABSTRACT

Temperature-dependent gonadal dysgenesis was shown to occur in the progeny of both inter- and intrastrain crosses involving two populations of Drosophila willistoni, one of which was an old laboratory stock, and the other, freshly collected from a natural population. We propose that the phenomenon observed was caused by the mobilization of transposable elements, as occurs in several other Drosophila species.


Subject(s)
Humans , Male , Female , Gonadal Dysgenesis/etiology , Temperature , Chromosome Inversion , Drosophila/genetics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...