Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 101: 187-193, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30513358

ABSTRACT

A systematic approach to formulate consistent, technically robust and scientifically tractable problems will facilitate achieving innovative and effective solutions in risk evaluation. The fundamentals of problem formulation have been adapted from environmental and human health risk assessments. A structured problem formulation enables focus on describing and evaluating the specifics of the problem to be solved, instead of immediately creating solutions. First the problem should be framed to provide clarity and gain agreement on the problem to be addressed, resulting in a specific problem statement. Second the problem is explored in order to transform it into an operational state through questions to answer, hypotheses to test, and represented by a conceptual model. Finally the approach to testing hypotheses is mapped and the analysis plan is developed to address the problem statement. This simple adaptable framework can be applied to any circumstance to resolve a specific problem and describe a path to resolution.


Subject(s)
Problem Solving , Research Design , Humans , Models, Theoretical
3.
Environ Toxicol Chem ; 34(10): 2250-62, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25929226

ABSTRACT

Hyalella azteca are epibenthic invertebrates that are widely used for toxicity studies. They are reported to be more sensitive to pyrethroid insecticides than most other test species, which has prompted considerable use of this species in toxicity testing of ambient surface waters where the presence of pyrethroids is suspected. However, resident H. azteca have been found in some ambient water bodies reported to contain surface water and/or sediment pyrethroid concentrations that are toxic to laboratory reared H. azteca. This observation suggests differences in the sensitivities of laboratory reared and field populations of H. azteca to pyrethroids. The goal of the present study was to determine the sensitivities of laboratory reared and field populations of H. azteca to the pyrethroids bifenthrin and cypermethrin. Specimens of H. azteca were collected from resident populations at field sites that are subject to varied land-use activities as well as from laboratory populations. These organisms were exposed to bifenthrin- or cypermethrin-spiked water in 96-h water-only toxicity tests. The resulting data demonstrated that: 1) field-collected populations in urban and agricultural settings can be >2 orders of magnitude less sensitive to the pyrethroids than laboratory reared organisms; 2) field-collected organisms varied in their sensitivity (possibly based on land-use activities), with organisms collected from undeveloped sites exhibiting sensitivities similar to laboratory reared organisms; and 3) the sensitivity of field-collected "tolerant" organisms increased in subsequent generations reared under laboratory conditions. Potential mechanisms for these differences are discussed.


Subject(s)
Amphipoda/drug effects , Insecticides/toxicity , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity , Animals , Insecticides/chemistry , Laboratories , Toxicity Tests, Acute , Water Pollutants, Chemical/chemistry
4.
Integr Environ Assess Manag ; 11(1): 102-17, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25091316

ABSTRACT

Simple, deterministic screening-level assessments that are highly conservative by design facilitate a rapid initial screening to determine whether a pesticide active ingredient has the potential to adversely affect threatened or endangered species. If a worst-case estimate of pesticide exposure is below a very conservative effects metric (e.g., the no observed effects concentration of the most sensitive tested surrogate species) then the potential risks are considered de minimis and unlikely to jeopardize the existence of a threatened or endangered species. Thus by design, such compounded layers of conservatism are intended to minimize potential Type II errors (failure to reject a false null hypothesis of de minimus risk), but correspondingly increase Type I errors (falsely reject a null hypothesis of de minimus risk). Because of the conservatism inherent in screening-level risk assessments, higher-tier scientific information and analyses that provide additional environmental realism can be applied in cases where a potential risk has been identified. This information includes community-level effects data, environmental fate and exposure data, monitoring data, geospatial location and proximity data, species biology data, and probabilistic exposure and population models. Given that the definition of "risk" includes likelihood and magnitude of effect, higher-tier risk assessments should use probabilistic techniques that more accurately and realistically characterize risk. Moreover, where possible and appropriate, risk assessments should focus on effects at the population and community levels of organization rather than the more traditional focus on the organism level. This document provides a review of some types of higher-tier data and assessment refinements available to more accurately and realistically evaluate potential risks of pesticide use to threatened and endangered species.


Subject(s)
Endangered Species , Environmental Pollutants/toxicity , Pesticides/toxicity , Animals , Environmental Monitoring , Models, Theoretical , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...