Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 18047, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302946

ABSTRACT

This study investigated the physiological and molecular responses of Wistar Hannover rats, submitted to three 5-week chronic training models, with similar training loads. Twenty-four Wistar Hanover rats were randomly divided into four groups: control (n = 6), low-intensity training (Z1; n = 6), moderate-intensity training (Z2; n = 6) and high-intensity training (Z3; n = 6). The three exercise groups performed a 5-week running training three times a week, with the same prescribed workload but the intensity and the volume were different between groups. An increase in maximal speed was observed after four weeks of training for the three groups that trained, with no difference between groups. Higher rest glycogen was also observed in the soleus muscle after training for the exercise groups compared to the control group. We also found that the Z2 group had a higher protein content of total and phosphorylated GSK3-ß compared to the control group after five weeks of training. In conclusion, the present study shows that five weeks of treadmill training based on intensity zones 1, 2, and 3 improved performance and increased resting glycogen in the soleus muscle, therefore intensity modulation does not change the training program adaptation since the different program loads are equalized.


Subject(s)
Physical Conditioning, Animal , Running , Rats , Animals , Rats, Wistar , Glycogen Synthase Kinase 3/metabolism , Glycogen/metabolism , Running/physiology , Muscle, Skeletal/metabolism , Biomarkers/metabolism , Physical Conditioning, Animal/physiology
2.
Mol Metab ; 60: 101492, 2022 06.
Article in English | MEDLINE | ID: mdl-35390501

ABSTRACT

OBJECTIVE: Although it is well established that urocortin 2 (Ucn2), a peptide member of the corticotrophin releasing factor (CRF) family, and its specific corticotrophin-releasing factor 2 receptor (CRF2R) are highly expressed in skeletal muscle, the role of this peptide in the regulation of skeletal muscle mass and protein metabolism remains elusive. METHODS: To elucidate the mechanisms how Ucn2 directly controls protein metabolism in skeletal muscles of normal mice, we carried out genetic tools, physiological and molecular analyses of muscles in vivo and in vitro. RESULTS: Here, we demonstrated that Ucn2 overexpression activated cAMP signaling and promoted an expressive muscle hypertrophy associated with higher rates of protein synthesis and activation of Akt/mTOR and ERK1/2 signaling pathways. Furthermore, Ucn2 induced a decrease in mRNA levels of atrogin-1 and in autophagic flux inferred by an increase in the protein content of LC3-I, LC3-II and p62. Accordingly, Ucn2 reduced both the transcriptional activity of FoxO in vivo and the overall protein degradation in vitro through an inhibition of lysosomal proteolytic activity. In addition, we demonstrated that Ucn2 induced a fast-to-slow fiber type shift and improved fatigue muscle resistance, an effect that was completely blocked in muscles co-transfected with mitogen-activated protein kinase phosphatase 1 (MKP-1), but not with dominant-negative Akt mutant (Aktmt). CONCLUSIONS: These data suggest that Ucn2 triggers an anabolic and anti-catabolic response in skeletal muscle of normal mice probably through the activation of cAMP cascade and participation of Akt and ERK1/2 signaling. These findings open new perspectives in the development of therapeutic strategies to cope with the loss of muscle mass.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Proto-Oncogene Proteins c-akt , Urocortins/metabolism , Adrenocorticotropic Hormone/metabolism , Adrenocorticotropic Hormone/pharmacology , Animals , Hypertrophy/metabolism , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Mice , Muscle, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Urocortins/pharmacology
3.
Cancers (Basel) ; 12(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668598

ABSTRACT

Background: Cancer-cachexia induces a variety of metabolic disorders, including skeletal muscle imbalance. Alternative therapy, as nutritional supplementation with leucine, shows a modulatory effect over tumour damage in vivo and in vitro. Method: Adult rats distributed into Control (C), Walker tumour-bearing (W), control fed a leucine-rich diet (L), and tumour-bearing fed a leucine-rich diet (WL) groups had the gastrocnemius muscle metabolomic and proteomic assays performed in parallel to in vitro assays. Results: W group presented an affected muscle metabolomic and proteomic profile mainly related to energy generation and carbohydrates catabolic processes, but leucine-supplemented group (WL) recovered the energy production. In vitro assay showed that cell proliferation, mitochondria number and oxygen consumption were higher under leucine effect than the tumour influence. Muscle proteomics results showed that the main affected cell component was mitochondria, leading to an impacted energy generation, including impairment in proteins of the tricarboxylic cycle and carbohydrates catabolic processes, which were modulated and improved by leucine treatment. Conclusion: In summary, we showed a beneficial effect of leucine upon mitochondria, providing information about the muscle glycolytic pathways used by this amino acid, where it can be associated with the preservation of morphometric parameters and consequent protection against the effects of cachexia.

4.
Metabolism ; 61(10): 1473-85, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22592131

ABSTRACT

The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[(14)C]-pyruvate into glycerol-TAG. The denervation provokes a reduction (~70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a ~35% decrease in GyK activity of control rats and a further ~35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low.


Subject(s)
Adipose Tissue, White/metabolism , Diabetes Mellitus, Experimental/metabolism , Dietary Proteins/administration & dosage , Fasting/metabolism , Glycerophosphates/biosynthesis , Sympathetic Nervous System/physiology , Animals , Blood Glucose/analysis , Gluconeogenesis , Glucose/metabolism , Glycerol Kinase/metabolism , Insulin/blood , Male , Norepinephrine/metabolism , Rats , Rats, Wistar , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL
...