Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(49): 55028-55038, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36458663

ABSTRACT

Liquid metal embedded elastomers (LMEEs) are composed of a soft polymer matrix embedded with droplets of metal alloys that are liquid at room temperature. These soft matter composites exhibit exceptional combinations of elastic, electrical, and thermal properties that make them uniquely suited for applications in flexible electronics, soft robotics, and thermal management. However, the fabrication of LMEE structures has primarily relied on rudimentary techniques that limit patterning to simple planar geometries. Here, we introduce an approach for direct ink write (DIW) printing of a printable LMEE ink to create three-dimensional shapes with various designs. We use eutectic gallium-indium (EGaIn) as the liquid metal, which reacts with oxygen to form an electrically insulating oxide skin that acts as a surfactant and stabilizes the droplets for 3D printing. To rupture the oxide skin and achieve electrical conductivity, we encase the LMEE in a viscoelastic polymer and apply acoustic shock. For printed composites with a 80% LM volume fraction, this activation method allows for a volumetric electrical conductivity of 5 × 104 S cm-1 (80% LM volume)─significantly higher than what had been previously reported with mechanically sintered EGaIn-silicone composites. Moreover, we demonstrate the ability to print 3D LMEE interfaces that provide enhanced charge transfer for a triboelectric nanogenerator (TENG) and improved thermal conductivity within a thermoelectric device (TED). The 3D printed LMEE can be integrated with a highly soft TED that is wearable and capable of providing cooling/heating to the skin through electrical stimulation.

2.
J Phys Chem B ; 125(20): 5408-5419, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33979515

ABSTRACT

Polymeric ionogels, cross-linked gels swollen by ionic liquids (ILs), are useful vehicles for the release and storage of molecular solutes in separation, delivery, and other applications. Although rapid solute diffusion is often critical for performance, it remains challenging to predict diffusivities across multidimensional composition spaces. Recently, we showed that water (a neutral solute) diffuses through alkyl-methylimidazolium halide ILs by hopping between hydrogen bonding sites on relatively immobile cations. Here, we expand on this activated hopping mechanism in two significant ways. First, we demonstrate that water diffuses through poly(ethylene glycol)diacrylate ionogels via the same mechanism at a reduced rate. Second, we hypothesize that the activation energy barrier can be determined from relatively simple 1H NMR chemical shift measurements of the proton responsible for H-bonding. This relationship enables water's diffusivity in ionogels of this class to be predicted quantitatively, requiring only (1) the composition-dependent diffusivity and Arrhenius behavior of a single IL and (2) 1H NMR spectra of the ionogels of interest. High-throughput microfluidic Fabry-Perot interferometry measurements verify prediction accuracy across a broad formulation space (four ILs, 0 ≤ xH2O ≤ 0.7, 0 ≤ ϕPEGDA ≤ 0.66). The predictive model may expedite IL-material screening; moreover, it intimates a powerful connection between solute mobility and hydrogen bonding and suggests targets for rational design.

3.
ACS Macro Lett ; 10(5): 538-544, 2021 May 18.
Article in English | MEDLINE | ID: mdl-35570776

ABSTRACT

Hydration of the amphiphilic diblock oligomer C16H33(CH2CH2O)20OH (C16E20) leads to concentration-dependent formation of micellar body-centered cubic (BCC) and Frank-Kasper A15 lyotropic liquid crystals (LLCs). Quiescent thermal annealing of aqueous LLCs comprising 56-59 wt % C16E20 at 25 °C after quenching from high temperatures established their ability to form short-lived BCC phases, which transform into long-lived, transient Frank-Kasper σ phases en route to equilibrium A15 morphologies on a time scale of months. Here, the frequency and magnitude of applied oscillatory shear show the potential to either dynamically stabilize the metastable BCC phase at low frequencies or increase the rate of formation of the A15 to minutes at high frequencies. Time-resolved synchrotron small-angle X-ray scattering (TR-SAXS) provides in situ characterization of the structures during shear and thermal processing. This work shows that the LLC morphology and order-order phase transformation rates can be controlled by tuning the shear strain amplitude and frequency.

SELECTION OF CITATIONS
SEARCH DETAIL
...