Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5077, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871743

ABSTRACT

Optical nonreciprocity is manifested as a difference in the transmission of light for the opposite directions of excitation. Nonreciprocal optics is traditionally realized with relatively bulky components such as optical isolators based on the Faraday rotation, hindering the miniaturization and integration of optical systems. Here we demonstrate free-space nonreciprocal transmission through a metasurface comprised of a two-dimensional array of nanoresonators made of silicon hybridized with vanadium dioxide (VO2). This effect arises from the magneto-electric coupling between Mie modes supported by the resonator. Nonreciprocal response of the nanoresonators occurs without the need for external bias; instead, reciprocity is broken by the incident light triggering the VO2 phase transition for only one direction of incidence. Nonreciprocal transmission is broadband covering over 100 nm in the telecommunication range in the vicinity of λ = 1.5 µm. Each nanoresonator unit cell occupies only ~0.1 λ3 in volume, with the metasurface thickness measuring about half-a-micron. Our self-biased nanoresonators exhibit nonreciprocity down to very low levels of intensity on the order of 150 W/cm2 or a µW per nanoresonator. We estimate picosecond-scale transmission fall times and sub-microsecond scale transmission rise. Our demonstration brings low-power, broadband and bias-free optical nonreciprocity to the nanoscale.

2.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38550347

ABSTRACT

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

3.
Sci Adv ; 10(6): eadk0024, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38324688

ABSTRACT

The prevalence of computer vision systems necessitates hardware-based approaches to relieve the high computational demand of deep neural networks in resource-limited applications. One solution would be to off-load low-level image feature extraction, such as edge detection, from the digital network to the analog imaging system. To that end, this work demonstrates incoherent, broadband, low-noise optical edge detection of real-world scenes by combining the wavefront shaping of a 24-mm aperture metasurface with a refractive lens. An inverse design approach is used to optimize the metasurface for Laplacian-based edge detection across the 7.5- to 13.5-µm LWIR imaging band, allowing for facile integration with uncooled microbolometer-based LWIR imagers to encode edge information. A polarization multiplexed approach leveraging a birefringent metasurface is also demonstrated as a single-aperture implementation. This work could be applied to improve computer vision capabilities of resource-constrained systems by leveraging optical preprocessing to alleviate the computational requirements for high-accuracy image segmentation and classification.

4.
Nat Nanotechnol ; 19(4): 471-478, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38177276

ABSTRACT

Rapid developments in machine vision technology have impacted a variety of applications, such as medical devices and autonomous driving systems. These achievements, however, typically necessitate digital neural networks with the downside of heavy computational requirements and consequent high energy consumption. As a result, real-time decision-making is hindered when computational resources are not readily accessible. Here we report a meta-imager designed to work together with a digital back end to offload computationally expensive convolution operations into high-speed, low-power optics. In this architecture, metasurfaces enable both angle and polarization multiplexing to create multiple information channels that perform positively and negatively valued convolution operations in a single shot. We use our meta-imager for object classification, achieving 98.6% accuracy in handwritten digits and 88.8% accuracy in fashion images. Owing to its compactness, high speed and low power consumption, our approach could find a wide range of applications in artificial intelligence and machine vision applications.

5.
Article in English | MEDLINE | ID: mdl-38545337

ABSTRACT

Deep neural networks (DNNs) utilized recently are physically deployed with computational units (e.g., CPUs and GPUs). Such a design might lead to a heavy computational burden, significant latency, and intensive power consumption, which are critical limitations in applications such as the Internet of Things (IoT), edge computing, and the usage of drones. Recent advances in optical computational units (e.g., metamaterial) have shed light on energy-free and light-speed neural networks. However, the digital design of the metamaterial neural network (MNN) is fundamentally limited by its physical limitations, such as precision, noise, and bandwidth during fabrication. Moreover, the unique advantages of MNN's (e.g., light-speed computation) are not fully explored via standard 3×3 convolution kernels. In this paper, we propose a novel large kernel metamaterial neural network (LMNN) that maximizes the digital capacity of the state-of-the-art (SOTA) MNN with model re-parametrization and network compression, while also considering the optical limitation explicitly. The new digital learning scheme can maximize the learning capacity of MNN while modeling the physical restrictions of meta-optic. With the proposed LMNN, the computation cost of the convolutional front-end can be offloaded into fabricated optical hardware. The experimental results on two publicly available datasets demonstrate that the optimized hybrid design improved classification accuracy while reducing computational latency. The development of the proposed LMNN is a promising step towards the ultimate goal of energy-free and light-speed AI.

6.
ACS Nano ; 16(9): 15100-15107, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36018810

ABSTRACT

Optical metasurfaces offer a compact platform for manipulation of the amplitude, phase, and polarization state of light. Independent control over these properties, however, is hindered by the symmetric transmission matrix associated with single-layer metasurfaces. Here, we utilize multilayer birefringent meta-optics to realize high-efficiency, independent control over the amplitude, phase, and polarization state of light. High-efficiency control is enabled by redistributing the wavefront between cascaded metasurfaces, while end-to-end inverse design is used to realize independent complex-valued functions for orthogonal polarization states. Based on this platform, we demonstrate spatial mode division multiplexing, optical mode conversion, and universal vectorial holograms, all with diffraction efficiencies over 80%. This meta-optic platform expands the design space of flat optics and could lead to advances in optical communications, quantum entanglement, and information encryption.

7.
Sci Adv ; 8(30): eabo6410, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35895828

ABSTRACT

Rapid advances in deep learning have led to paradigm shifts in a number of fields, from medical image analysis to autonomous systems. These advances, however, have resulted in digital neural networks with large computational requirements, resulting in high energy consumption and limitations in real-time decision-making when computation resources are limited. Here, we demonstrate a meta-optic-based neural network accelerator that can off-load computationally expensive convolution operations into high-speed and low-power optics. In this architecture, metasurfaces enable both spatial multiplexing and additional information channels, such as polarization, in object classification. End-to-end design is used to co-optimize the optical and digital systems, resulting in a robust classifier that achieves 93.1% accurate classification of handwriting digits and 93.8% accuracy in classifying both the digit and its polarization state. This approach could enable compact, high-speed, and low-power image and information processing systems for a wide range of applications in machine vision and artificial intelligence.

8.
Nano Lett ; 22(4): 1626-1632, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35138860

ABSTRACT

Dynamic tuning of metamaterials is a critical step toward advanced functionality and improved bandwidth. In the visible spectrum, full spectral color tuning is inhibited by the large absorption that accompanies index changes, particularly at blue wavelengths. Here, we show that the electrochemical lithiation of anatase TiO2 to Li0.5TiO2 (LTO) results in an index change of 0.65 at 649 nm with absorption coefficient less than 0.1 at blue wavelengths, making this material well-suited for dynamic visible color tuning. Dynamic tunability of TiO2 is leveraged in a Fabry-Perot cavity and a gap plasmon metasurface. In the Fabry-Perot configuration, the device exhibits a shift in reflectance of over 100 nm when subjected to only 2 V bias while the gap plasmon metasurface achieves enhanced switching speed. The dynamic range, speed, and cyclability indicate that the TiO2/LTO system is competitive with established actuators like WO3, with the additional advantage of reduced absorption at high frequencies.

9.
Nano Lett ; 21(20): 8715-8722, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34643401

ABSTRACT

Optical Fourier transform-based processing is an attractive technique due to the fast processing times and large-data rates. Furthermore, it has recently been demonstrated that certain Fourier-based processors can be realized in compact form factors using flat optics. The flat optics, however, have been demonstrated as static filters where the operator is fixed, limiting the applicability of the approach. Here, we demonstrate a reconfigurable metasurface that can be dynamically tuned to provide a range of processing modalities including bright-field imaging, low-pass and high-pass filtering, and second-order differentiation. The dynamically tunable metasurface can be directly combined with standard coherent imaging systems and operates with a numerical aperture up to 0.25 and over a 60 nm bandwidth. The ability to dynamically control light in the wave vector domain, while doing so in a compact form factor, may open new doors to applications in microscopy, machine vision, and sensing.


Subject(s)
Image Processing, Computer-Assisted , Optics and Photonics , Microscopy
10.
Nano Lett ; 20(6): 4638-4644, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32421337

ABSTRACT

Optical limiting is desirable or necessary in a variety of applications that employ high-power light sources or sensitive photodetectors. However, the most prevalent methods compromise between on-state transmission and turndown ratio or rely on narrow transmission windows. We demonstrate that a metasurface-based architecture incorporating phase-change materials enables both high and broadband on-state transmission (-4.8 dB) while also providing a large turndown ratio (25.2 dB). Additionally, this design can be extended for broadband multiwavelength limiting due to the high off-resonance transmittance and readily scalable resonant wavelength. Furthermore, our choice of active material allows for protection in ultrafast laser environments due to the speed of the phase transition. These benefits offer a strong alternative to state-of-the-art optical limiters in technologies ranging from sensor protection to protective eyewear.

11.
Light Sci Appl ; 8: 80, 2019.
Article in English | MEDLINE | ID: mdl-31666946

ABSTRACT

Optical metasurfaces have become versatile platforms for manipulating the phase, amplitude, and polarization of light. A platform for achieving independent control over each of these properties, however, remains elusive due to the limited engineering space available when using a single-layer metasurface. For instance, multiwavelength metasurfaces suffer from performance limitations due to space filling constraints, while control over phase and amplitude can be achieved, but only for a single polarization. Here, we explore bilayer dielectric metasurfaces to expand the design space for metaoptics. The ability to independently control the geometry and function of each layer enables the development of multifunctional metaoptics in which two or more optical properties are independently designed. As a proof of concept, we demonstrate multiwavelength holograms, multiwavelength waveplates, and polarization-insensitive 3D holograms based on phase and amplitude masks. The proposed architecture opens a new avenue for designing complex flat optics with a wide variety of functionalities.

12.
Nano Lett ; 18(12): 7529-7537, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30394751

ABSTRACT

Metasurfaces provide a versatile platform for manipulating the wavefront of light using planar nanostructured surfaces. Transmissive metasurfaces, with full 2π phase control, are a particularly attractive platform for replacing conventional optical elements due to their small footprint and broad functionality. However, the operational bandwidth of metasurfaces has been a critical limitation and is directly connected to either their resonant response or the diffractive dispersion of their lattice. While multiwavelength and continuous band operation have been demonstrated, the elements suffer from either low efficiency, reduced imaging quality, or limited element size. Here, we propose a platform that provides for multiwavelength operation by employing tightly spaced multilayer dielectric metasurfaces. As a proof of concept, we demonstrate a multiwavelength metalens doublet (NA = 0.42) with focusing efficiencies of 38% and 52% at wavelengths of 1180 and 1680 nm, respectively. We further show how this approach can be extended to three-wavelength metalenses as well as a spectral splitter. This approach could find applications in fluorescent microscopy, digital imaging, and color routing.

13.
Nat Nanotechnol ; 13(2): 96-97, 2018 02.
Article in English | MEDLINE | ID: mdl-29230045

Subject(s)
Electrons , Nanotubes
14.
Adv Mater ; 29(39)2017 Oct.
Article in English | MEDLINE | ID: mdl-28833653

ABSTRACT

Precise control of a material's emissivity is critical for thermal-engineering applications. Metamaterials, which derive their optical properties from sub-wavelength structures, have emerged as a promising way to tune emissivity over a wide parameter space. However, metamaterial designs have not yet achieved simultaneous spatial and temporal control of emissivity, which is important for advanced engineering applications such as adaptive thermal management and reconfigurable infrared camouflage. Here, spatiotemporal emissivity control is demonstrated by designing and fabricating a large-area, infrared metamaterial that is modulated with ultraviolet (UV) light. The UV light generates free carriers in a photosensitive ZnO spacer layer, which changes the metamaterial optical properties and causes a localized increase in emissivity. Thermal imaging of the metamaterial during UV illumination reveals an apparent temperature increase as a result of the emissivity change. The imaged temperature fluctuation is recorded under exposure from a temporally modulated and spatially patterned UV illumination source to characterize both the temporal response and spatial resolution of the emissivity change. The results of this work demonstrate new capabilities for thermal metamaterials that could bring about the next generation of thermal-engineering devices.

15.
Nano Lett ; 17(8): 4881-4885, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28731722

ABSTRACT

Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated and local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.

16.
Philos Trans A Math Phys Eng Sci ; 375(2090)2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28220002

ABSTRACT

Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.This article is part of the themed issue 'New horizons for nanophotonics'.

17.
Nano Lett ; 15(11): 7388-93, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26501777

ABSTRACT

Strong nonlinear light-matter interaction is highly sought-after for a variety of applications including lasing and all-optical light modulation. Recently, resonant plasmonic structures have been considered promising candidates for enhancing nonlinear optical processes due to their ability to greatly enhance the optical near-field; however, their small mode volumes prevent the inherently large nonlinear susceptibility of the metal from being efficiently exploited. Here, we present an alternative approach that utilizes a Fano-resonant silicon metasurface. The metasurface results in strong near-field enhancement within the volume of the silicon resonator while minimizing two photon absorption. We measure a third harmonic generation enhancement factor of 1.5 × 10(5) with respect to an unpatterned silicon film and an absolute conversion efficiency of 1.2 × 10(-6) with a peak pump intensity of 3.2 GW cm(-2). The enhanced nonlinearity, combined with a sharp linear transmittance spectrum, results in transmission modulation with a modulation depth of 36%. The modulation mechanism is studied by pump-probe experiments.

18.
Nano Lett ; 15(11): 7440-4, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26426510

ABSTRACT

Recently, there has been much interest in the extraction of hot electrons generated from surface plasmon decay, as this process can be used to achieve additional bandwidth for both photodetectors and photovoltaics. Hot electrons are typically injected into semiconductors over a Schottky barrier between the metal and semiconductor, enabling generation of photocurrent with below bandgap photon illumination. As a two-dimensional semiconductor single and few layer molybdenum disulfide (MoS2) has been demonstrated to exhibit internal photogain and therefore becomes an attractive hot electron acceptor. Here, we investigate hot electron-based photodetection in a device consisting of bilayer MoS2 integrated with a plasmonic antenna array. We demonstrate sub-bandgap photocurrent originating from the injection of hot electrons into MoS2 as well as photoamplification that yields a photogain of 10(5). The large photogain results in a photoresponsivity of 5.2 A/W at 1070 nm, which is far above similar silicon-based hot electron photodetectors in which no photoamplification is present. This technique is expected to have potential use in future ultracompact near-infrared photodetection and optical memory devices.

19.
Nat Commun ; 6: 8379, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26391292

ABSTRACT

Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform.

20.
Nat Commun ; 5: 5753, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25511508

ABSTRACT

Metasurface analogues of electromagnetically induced transparency (EIT) have been a focus of the nanophotonics field in recent years, due to their ability to produce high-quality factor (Q-factor) resonances. Such resonances are expected to be useful for applications such as low-loss slow-light devices and highly sensitive optical sensors. However, ohmic losses limit the achievable Q-factors in conventional plasmonic EIT metasurfaces to values <~10, significantly hampering device performance. Here we experimentally demonstrate a classical analogue of EIT using all-dielectric silicon-based metasurfaces. Due to extremely low absorption loss and coherent interaction of neighbouring meta-atoms, a Q-factor of 483 is observed, leading to a refractive index sensor with a figure-of-merit of 103. Furthermore, we show that the dielectric metasurfaces can be engineered to confine the optical field in either the silicon resonator or the environment, allowing one to tailor light-matter interaction at the nanoscale.

SELECTION OF CITATIONS
SEARCH DETAIL
...