Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 132(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-34847077

ABSTRACT

The dysregulation of energy homeostasis in obesity involves multihormone resistance. Although leptin and insulin resistance have been well characterized, catecholamine resistance remains largely unexplored. Murine ß3-adrenergic receptor expression in adipocytes is orders of magnitude higher compared with that of other isoforms. While resistant to classical desensitization pathways, its mRNA (Adrb3) and protein expression are dramatically downregulated after ligand exposure (homologous desensitization). ß3-Adrenergic receptor downregulation also occurs after high-fat diet feeding, concurrent with catecholamine resistance and elevated inflammation. This downregulation is recapitulated in vitro by TNF-α treatment (heterologous desensitization). Both homologous and heterologous desensitization of Adrb3 were triggered by induction of the pseudokinase TRIB1 downstream of the EPAC/RAP2A/PI-PLC pathway. TRIB1 in turn degraded the primary transcriptional activator of Adrb3, CEBPα. EPAC/RAP inhibition enhanced catecholamine-stimulated lipolysis and energy expenditure in obese mice. Moreover, adipose tissue expression of genes in this pathway correlated with body weight extremes in a cohort of genetically diverse mice and with BMI in 2 independent cohorts of humans. These data implicate a signaling axis that may explain reduced hormone-stimulated lipolysis in obesity and resistance to therapeutic interventions with ß3-adrenergic receptor agonists.


Subject(s)
Adipocytes/metabolism , Catecholamines/pharmacology , Down-Regulation/drug effects , Drug Resistance/drug effects , Obesity/metabolism , Receptors, Adrenergic, beta-3/metabolism , 3T3-L1 Cells , Animals , Down-Regulation/genetics , Drug Resistance/genetics , Energy Metabolism/drug effects , Energy Metabolism/genetics , Lipolysis/drug effects , Lipolysis/genetics , Male , Mice , Obesity/drug therapy , Obesity/genetics , Receptors, Adrenergic, beta-3/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
2.
Nature ; 599(7884): 296-301, 2021 11.
Article in English | MEDLINE | ID: mdl-34707293

ABSTRACT

Adipocytes increase energy expenditure in response to prolonged sympathetic activation via persistent expression of uncoupling protein 1 (UCP1)1,2. Here we report that the regulation of glycogen metabolism by catecholamines is critical for UCP1 expression. Chronic ß-adrenergic activation leads to increased glycogen accumulation in adipocytes expressing UCP1. Adipocyte-specific deletion of a scaffolding protein, protein targeting to glycogen (PTG), reduces glycogen levels in beige adipocytes, attenuating UCP1 expression and responsiveness to cold or ß-adrenergic receptor-stimulated weight loss in obese mice. Unexpectedly, we observed that glycogen synthesis and degradation are increased in response to catecholamines, and that glycogen turnover is required to produce reactive oxygen species leading to the activation of p38 MAPK, which drives UCP1 expression. Thus, glycogen has a key regulatory role in adipocytes, linking glucose metabolism to thermogenesis.


Subject(s)
Adipocytes/metabolism , Glucose/metabolism , Glycogen/metabolism , Homeostasis , Thermogenesis , Adaptation, Physiological , Adipocytes, Beige/metabolism , Animals , Cold Temperature , Energy Metabolism , Female , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Knockout , Uncoupling Protein 1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Cell Rep ; 35(13): 109331, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34192547

ABSTRACT

The contribution of adipose-derived FGF21 to energy homeostasis is unclear. Here we show that browning of inguinal white adipose tissue (iWAT) by ß-adrenergic agonists requires autocrine FGF21 signaling. Adipose-specific deletion of the FGF21 co-receptor ß-Klotho renders mice unresponsive to ß-adrenergic stimulation. In contrast, mice with liver-specific ablation of FGF21, which eliminates circulating FGF21, remain sensitive to ß-adrenergic browning of iWAT. Concordantly, transgenic overexpression of FGF21 in adipocytes promotes browning in a ß-Klotho-dependent manner without increasing circulating FGF21. Mechanistically, we show that ß-adrenergic stimulation of thermogenic gene expression requires FGF21 in adipocytes to promote phosphorylation of phospholipase C-γ and mobilization of intracellular calcium. Moreover, we find that the ß-adrenergic-dependent increase in circulating FGF21 occurs through an indirect mechanism in which fatty acids released by adipocyte lipolysis subsequently activate hepatic PPARα to increase FGF21 expression. These studies identify FGF21 as a cell-autonomous autocrine regulator of adipose tissue function.


Subject(s)
Adipocytes/metabolism , Autocrine Communication , Fibroblast Growth Factors/metabolism , Gene Expression Regulation , Thermogenesis/genetics , 3T3-L1 Cells , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adrenergic beta-Agonists , Animals , Autocrine Communication/genetics , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Lipolysis , Liver/metabolism , Mice , Organ Specificity , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Adrenergic, beta-3/metabolism , Receptors, Fibroblast Growth Factor/metabolism
4.
J Gerontol A Biol Sci Med Sci ; 75(4): 647-653, 2020 03 09.
Article in English | MEDLINE | ID: mdl-30423026

ABSTRACT

Nuclear factor (NF)κB is a transcription factor that controls immune and inflammatory signaling pathways. In skeletal muscle, NFκB has been implicated in the regulation of metabolic processes and tissue mass, yet its affects on mitochondrial function in this tissue are unclear. To investigate the role of NFκB on mitochondrial function and its relationship with muscle mass across the life span, we study a mouse model with muscle-specific NFκB suppression (muscle-specific IκBα super-repressor [MISR] mice). In wild-type mice, there was a natural decline in muscle mass with aging that was accompanied by decreased mitochondrial function and mRNA expression of electron transport chain subunits. NFκB inactivation downregulated expression of PPARGC1A, and upregulated TFEB and PPARGC1B. NFκB inactivation also decreased gastrocnemius (but not soleus) muscle mass in early life (1-6 months old). Lower oxygen consumption rates occurred in gastrocnemius and soleus muscles from young MISR mice, whereas soleus (but not gastrocnemius) muscles from old MISR mice displayed increased oxygen consumption compared to age-matched controls. We conclude that the NFκB pathway plays an important role in muscle development and growth. The extent to which NFκB suppression alters mitochondrial function is age dependent and muscle specific. Finally, mitochondrial function and muscle mass are tightly associated in both genotypes and across the life span.


Subject(s)
Mitochondria, Muscle/physiology , Muscle Development/physiology , NF-kappa B/physiology , Aging/genetics , Aging/pathology , Aging/physiology , Animals , Citrate (si)-Synthase/metabolism , Gene Expression Regulation, Developmental , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Muscle/genetics , Muscle Development/genetics , Muscle, Skeletal/physiology , Muscle, Skeletal/ultrastructure , NF-kappa B/antagonists & inhibitors , Oxygen Consumption , Signal Transduction
5.
Adv Exp Med Biol ; 1128: 185-225, 2019.
Article in English | MEDLINE | ID: mdl-31062331

ABSTRACT

Accumulating evidence suggests that Alzheimer's disease may manifest as a metabolic disorder with pathology and/or dysfunction in numerous tissues. Adults with Alzheimer's disease suffer with significantly more comorbidities than demographically matched Medicare beneficiaries (Zhao et al, BMC Health Serv Res 8:108, 2008b). Reciprocally, comorbid health conditions increase the risk of developing Alzheimer's disease (Haaksma et al, PLoS One 12(5):e0177044, 2017). Type 2 diabetes mellitus is especially notable as the disease shares many overlapping pathologies observed in patients with Alzheimer's disease, including hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, dyslipidemia, inflammation, and cognitive dysfunction, as described in Chap. 8 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al, Neurology 53(9):1937-1942, 1999; Voisin et al, Rev Med Interne 24(Suppl 3):288s-291s, 2003; Janson et al. Diabetes 53(2):474-481, 2004; Ristow M, J Mol Med (Berl) 82(8):510-529, 2004; Whitmer et al, BMJ 330(7504):1360, 2005, Curr Alzheimer Res 4(2):103-109, 2007; Ohara et al, Neurology 77(12):1126-1134, 2011). Although nondiabetic older adults also experience age-related cognitive decline, diabetes is uniquely associated with a twofold increased risk of Alzheimer's disease, as described in Chap. 2 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al. Neurology 53(9):1937-1942, 1999; Ohara et al, Neurology 77(12):1126-1134, 2011). Good glycemic control has been shown to improve cognitive status (Cukierman-et al, Diabetes Care 32(2):221-226, 2009), and the use of insulin sensitizers is correlated with a lower rate of cognitive decline in older adults (Morris JK, Burns JM, Curr Neurol Neurosci Rep 12(5):520-527, 2012). At the molecular level, the mechanistic/mammalian target of rapamycin (mTOR) plays a key role in maintaining energy homeostasis. Nutrient availability and cellular stress information, both extracellular and intracellular, are integrated and transduced through mTOR signaling pathways. Aberrant regulation of mTOR occurs in the brains of patients with Alzheimer's disease and in numerous tissues of individuals with type 2 diabetes (Mannaa et al, J Mol Med (Berl) 91(10):1167-1175, 2013). Moreover, modulating mTOR activity with a pharmacological inhibitor, rapamycin, provides wide-ranging health benefits, including healthy life span extension in numerous model organisms (Vellai et al, Nature 426(6967):620, 2003; Jia et al, Development 131(16):3897-3906, 2004; Kapahi et al, Curr Biol 14(10):885-890, 2004; Kaeberlein et al, Science 310(5751):1193-1196, 2005; Powers et al, Genes Dev 20(2):174-184, 2006; Harrison et al, Nature 460(7253):392-395, 2009; Selman et al, Science 326(5949):140-144, 2009; Sharp ZD, Strong R, J Gerontol A Biol Sci Med Sci 65(6):580-589, 2010), which underscores its importance to overall organismal health and longevity. In this chapter, we discuss the physiological role of mTOR signaling and the consequences of mTOR dysregulation in the brain and peripheral tissues, with emphasis on its relevance to the development of Alzheimer's disease and link to type 2 diabetes.


Subject(s)
Alzheimer Disease/pathology , Diabetes Mellitus, Type 2/pathology , Signal Transduction , TOR Serine-Threonine Kinases/physiology , Humans
6.
Aging Cell ; 17(6): e12840, 2018 12.
Article in English | MEDLINE | ID: mdl-30126037

ABSTRACT

Tau protein accumulation is the most common pathology among degenerative brain diseases, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), traumatic brain injury (TBI), and over twenty others. Tau-containing neurofibrillary tangle (NFT) accumulation is the closest correlate with cognitive decline and cell loss (Arriagada, Growdon, Hedley-Whyte, & Hyman, ), yet mechanisms mediating tau toxicity are poorly understood. NFT formation does not induce apoptosis (de Calignon, Spires-Jones, Pitstick, Carlson, & Hyman, 2009), which suggests that secondary mechanisms are driving toxicity. Transcriptomic analyses of NFT-containing neurons microdissected from postmortem AD brain revealed an expression profile consistent with cellular senescence. This complex stress response induces aberrant cell cycle activity, adaptations to maintain survival, cellular remodeling, and metabolic dysfunction. Using four AD transgenic mouse models, we found that NFTs, but not Aß plaques, display a senescence-like phenotype. Cdkn2a transcript level, a hallmark measure of senescence, directly correlated with brain atrophy and NFT burden in mice. This relationship extended to postmortem brain tissue from humans with PSP to indicate a phenomenon common to tau toxicity. Tau transgenic mice with late-stage pathology were treated with senolytics to remove senescent cells. Despite the advanced age and disease progression, MRI brain imaging and histopathological analyses indicated a reduction in total NFT density, neuron loss, and ventricular enlargement. Collectively, these findings indicate a strong association between the presence of NFTs and cellular senescence in the brain, which contributes to neurodegeneration. Given the prevalence of tau protein deposition among neurodegenerative diseases, these findings have broad implications for understanding, and potentially treating, dozens of brain diseases.


Subject(s)
Brain/metabolism , Brain/pathology , Cellular Senescence , Neurofibrillary Tangles/metabolism , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Supranuclear Palsy, Progressive/pathology , tau Proteins/metabolism , Aged, 80 and over , Alzheimer Disease/pathology , Analysis of Variance , Animals , Antioxidants/pharmacology , Atrophy , Cyclin-Dependent Kinase Inhibitor p16/genetics , Dasatinib/pharmacology , Disease Models, Animal , Female , Gene Expression , Humans , Male , Mice , Mice, Transgenic , Nerve Degeneration/drug therapy , Nerve Degeneration/metabolism , Neurofibrillary Tangles/drug effects , Protein Aggregates , Protein Kinase Inhibitors/pharmacology , Quercetin/pharmacology , Up-Regulation , tau Proteins/genetics
7.
Geroscience ; 40(5-6): 453-468, 2018 12.
Article in English | MEDLINE | ID: mdl-30121784

ABSTRACT

To investigate the role of increased levels of thioredoxin (Trx) in both the cytosol (Trx1) and mitochondria (Trx2) on aging, we have conducted a study to examine survival and age-related diseases using male mice overexpressing Trx1 and Trx2 (TXNTg × TXN2Tg). Our study demonstrated that the upregulation of Trx in both the cytosol and mitochondria in male TXNTg × TXN2Tg C57BL/6 mice resulted in a significantly shorter lifespan compared to wild-type (WT) mice. Cross-sectional pathology data showed a slightly higher incidence of neoplastic diseases in TXNTg × TXN2Tg mice than WT mice. The incidence of lymphoma, a major neoplastic disease in C57BL/6 mice, was slightly higher in TXNTg × TXN2Tg mice than in WT mice, and more importantly, the severity of lymphoma was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Furthermore, the total number of histopathological changes in the whole body (disease burden) was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Therefore, our study suggests that overexpression of Trx in both the cytosol and mitochondria resulted in deleterious effects on aging and accelerated the development of age-related diseases, especially cancer, in male C57BL/6 mice.


Subject(s)
Aging/physiology , Cytosol/metabolism , Longevity/physiology , Mitochondria/metabolism , Thioredoxins/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Models, Animal
8.
Aging Cell ; 16(4): 847-858, 2017 08.
Article in English | MEDLINE | ID: mdl-28556540

ABSTRACT

Older adults universally suffer from sarcopenia and approximately 60-70% are diabetic or prediabetic. Nonetheless, the mechanisms underlying these aging-related metabolic disorders are unknown. NFκB has been implicated in the pathogenesis of several aging-related pathologies including sarcopenia and type 2 diabetes and has been proposed as a target against them. NFκB also is thought to mediate muscle wasting seen with disuse, denervation, and some systemic diseases (e.g., cancer, sepsis). We tested the hypothesis that lifelong inhibition of the classical NFκB pathway would protect against aging-related sarcopenia and insulin resistance. Aged mice with muscle-specific overexpression of a super-repressor IκBα mutant (MISR) were protected from insulin resistance. However, MISR mice were not protected from sarcopenia; to the contrary, these mice had decreases in muscle mass and strength compared to wild-type mice. In MISR mice, NFκB suppression also led to an increase in proteasome activity and alterations in several genes and pathways involved in muscle growth and atrophy (e.g., myostatin). We conclude that the mechanism behind aging-induced sarcopenia is NFκB independent and differs from muscle wasting due to pathologic conditions. Our findings also indicate that, while suppressing NFκB improves insulin sensitivity in aged mice, this transcription factor is important for normal muscle mass maintenance and its sustained inhibition is detrimental to muscle function.


Subject(s)
Aging/metabolism , Insulin Resistance , Muscle, Skeletal/metabolism , Myostatin/genetics , NF-kappa B/genetics , Sarcopenia/genetics , Aging/pathology , Animals , Blood Glucose/metabolism , Carnitine/analogs & derivatives , Carnitine/metabolism , Cell Line , Ceramides/metabolism , Female , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Myoblasts/metabolism , Myoblasts/pathology , NF-KappaB Inhibitor alpha/genetics , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Sarcopenia/metabolism , Sarcopenia/pathology
9.
Cell Stress Chaperones ; 21(3): 453-66, 2016 May.
Article in English | MEDLINE | ID: mdl-26894765

ABSTRACT

Proteostasis is an integral component of healthy aging, ensuring maintenance of protein structural and functional integrity with concomitant impact upon health span and longevity. In most metazoans, increasing age is accompanied by a decline in protein quality control resulting in the accrual of damaged, self-aggregating cytotoxic proteins. A notable exception to this trend is observed in the longest-lived rodent, the naked mole-rat (NMR, Heterocephalus glaber) which maintains proteostasis and proteasome-mediated degradation and autophagy during aging. We hypothesized that high levels of the proteolytic degradation may enable better maintenance of proteostasis during aging contributing to enhanced species maximum lifespan potential (MLSP). We test this by examining proteasome activity, proteasome-related HSPs, the heat-shock factor 1 (HSF1) transcription factor, and several markers of autophagy in the liver and quadriceps muscles of eight rodent species with divergent MLSP. All subterranean-dwelling species had higher levels of proteasome activity and autophagy, possibly linked to having to dig in soils rich in heavy metals and where underground atmospheres have reduced oxygen availability. Even after correcting for phylogenetic relatedness, a significant (p < 0.02) positive correlation between MLSP, HSP25, HSF1, proteasome activity, and autophagy-related protein 12 (ATG12) was observed, suggesting that the proteolytic degradation machinery and maintenance of protein quality play a pivotal role in species longevity among rodents.


Subject(s)
Aging/genetics , Longevity/genetics , Molecular Chaperones/genetics , Oxidative Stress/genetics , Aging/physiology , Animals , Autophagy/genetics , Autophagy-Related Protein 12/genetics , DNA-Binding Proteins/genetics , Heat Shock Transcription Factors , Liver/metabolism , Longevity/physiology , Mice , Mole Rats/genetics , Mole Rats/physiology , Molecular Chaperones/metabolism , Phylogeny , Proteasome Endopeptidase Complex/genetics , Proteolysis , Quadriceps Muscle/metabolism , Rats , Rodentia , Transcription Factors/genetics
10.
Psychopharmacology (Berl) ; 231(4): 651-62, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24057816

ABSTRACT

RATIONALE: Inactivating dopamine (DA) receptors in the caudate-putamen (CPu) attenuates basal and DA agonist-induced behaviors of adult rats while paradoxically increasing the locomotor activity of preweanling rats. OBJECTIVE: The purpose of this study was to determine (a) whether D1 or D2 receptor inactivation is responsible for the elevated locomotion shown by preweanling rats and (b) whether DA receptor inactivation produces a general state in which any locomotor-activating drug will cause a potentiated behavioral response. METHODS: Dimethyl sulfoxide (DMSO) or N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) was bilaterally infused into the CPu on postnatal day (PD) 17. In experiment 1, DA receptors were selectively protected from EEDQ-induced alkylation by pretreating rats with D1 and/or D2 antagonists. On PD 18, rats received bilateral microinjections of the DA agonist R(-)-propylnorapomorphine into the dorsal CPu, and locomotor activity was measured for 40 min. In subsequent experiments, the locomotion of DMSO- and EEDQ-pretreated rats was assessed after intraCPu infusions of the selective DA agonists SKF82958 and quinpirole, the partial agonist terguride, or after systemic administration of nonDAergic compounds. RESULTS: Experiment 1 showed that EEDQ's ability to enhance the locomotor activity of preweanling rats was primarily due to the inactivation of D2 receptors. Consistent with this finding, only drugs that directly or indirectly stimulated D2 receptors produced a potentiated locomotor response in EEDQ-treated rats. CONCLUSIONS: These results show that DA receptor inactivation causes dramatically different behavioral effects in preweanling and adult rats, thus providing additional evidence that the D2 receptor system is not functionally mature by the end of the preweanling period.


Subject(s)
Caudate Nucleus/metabolism , Putamen/metabolism , Receptors, Dopamine D2/metabolism , Aging , Alkylating Agents/pharmacology , Animals , Apomorphine/analogs & derivatives , Apomorphine/pharmacology , Benzazepines/pharmacology , Caudate Nucleus/drug effects , Caudate Nucleus/growth & development , Dimethyl Sulfoxide/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Dopamine D2 Receptor Antagonists , Female , Lisuride/analogs & derivatives , Lisuride/pharmacology , Male , Motor Activity/drug effects , Motor Activity/physiology , Putamen/drug effects , Putamen/growth & development , Quinolines/pharmacology , Quinpirole/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/agonists , Weaning
11.
Psychopharmacology (Berl) ; 231(8): 1637-47, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24287603

ABSTRACT

RATIONALE: Dopamine (DA) receptor inactivation produces opposing behavioral effects across ontogeny. For example, inactivating DA receptors in the dorsal striatum attenuates DA agonist-induced behaviors of adult rats, while potentiating the locomotor activity of preweanling rats. OBJECTIVE: The purpose of this study was to determine if DA receptor inactivation potentiates the DA agonist-induced locomotor activity of adolescent rats and whether alterations in D2(High) receptors are responsible for this effect. METHODS: In the behavioral experiment, the irreversible receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) or its vehicle (100 % dimethyl sulfoxide, DMSO) was bilaterally infused into the dorsal striatum on postnatal day (PD) 39. On PD 40, adolescent rats were given intrastriatal infusions of the DA agonist R(-)-propylnorapomorphine (NPA) or vehicle and locomotor activity was measured for 40 min. In the receptor binding experiment, rats received IP injections of EEDQ or DMSO (1:1 (v/v) in distilled water) on PD 17, PD 39, or PD 84. One day later, striatal samples were taken and subsequently assayed for D2-specific binding and D2(High) receptors using [(3)H]-domperidone. RESULTS: Unlike what is observed during the preweanling period, EEDQ attenuated the NPA-induced locomotor activity of adolescent rats. EEDQ reduced D2 receptor levels in the dorsal striatum of all age groups while increasing the proportion of D2(High) receptors. Regardless of pretreatment condition (i.e., DMSO or EEDQ), preweanling rats had a greater percentage of D2(High) receptors than adolescent or adult rats. CONCLUSIONS: DA receptor inactivation affects the behaviors of preweanling and older rats differently. The DA supersensitivity exhibited by EEDQ-treated preweanling rats may result from an excess of D2(High) receptors.


Subject(s)
Corpus Striatum/drug effects , Corpus Striatum/growth & development , Motor Activity/drug effects , Motor Activity/physiology , Receptors, Dopamine D2/metabolism , Animals , Apomorphine/analogs & derivatives , Apomorphine/pharmacology , Autoradiography , Corpus Striatum/physiology , Domperidone/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Female , Male , Quinolines/pharmacology , Rats , Receptors, Dopamine D2/agonists , Sex Characteristics , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL
...