Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(24): 43182-43194, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36523022

ABSTRACT

Individual nanoparticle spectroscopic characterization is fundamental, but challenging in liquids. While confocal selectivity is necessary to isolate a particle in a crowd, Brownian motion constantly offsets the particle from the light collection volume. Here, we present a system able to acquire holograms and reconstruct them to precisely determine the 3D position of a particle in real time. These coordinates drive an adaptive system comprising two galvanometric mirrors (x,y, transverse directions) and a tunable lens (z, longitudinal) which redirect light scattered from the corresponding region of space towards the confocal entrance of a spectrometer, thus allowing long spectral investigations on individual, freely-moving particles. A study of the movements and spectra of individual 100 nm Au nanoparticles undergoing two types of aggregations illustrates the possibilities of the method.

2.
ACS Nano ; 16(9): 14422-14431, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36099198

ABSTRACT

Monitoring chemical reactions in solutions at the scale of individual entities is challenging: single-particle detection requires small confocal volumes, which are hardly compatible with Brownian motion, particularly when long integration times are necessary. Here, we propose a real-time (10 Hz) holography-based nm-precision 3D tracking of single moving nanoparticles. Using this localization, the confocal collection volume is dynamically adjusted to follow the moving nanoparticle and allow continuous spectroscopic monitoring. This concept is applied to study galvanic exchange in freely moving colloidal silver nanoparticles with gold ions generated in situ. While the Brownian trajectory reveals particle size, spectral shifts dynamically reveal composition changes and transformation kinetics at the single-object level, pointing at different transformation kinetics for free and tethered particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...