Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Liver Transpl ; 13(3): 361-6, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17318854

ABSTRACT

This study examined the efficacy of the caspase inhibitor, IDN-6556, in a rat model of liver ischemia-reperfusion injury. Livers from male Sprague-Dawley rats were reperfused for 120 minutes after 24 hours of 4 degrees C cold storage in University of Wisconsin solution. Portal blood flow measurements estimated sinusoidal resistance, and bile production, alanine aminotransferase activities, and Suzuki scores were evaluated as parameters of hepatocyte/liver injury. Treated livers were exposed to 25 or 50 microM of IDN-6556 in University of Wisconsin storage solution and/or the perfusate. All treatment regimens with IDN-6556 significantly improved portal blood flow measured at 120 minutes, and significant improvements were seen as early as 30 minutes when inhibitor was also present in the perfusate (P < 0.01). All treatment groups with IDN-6556 significantly increased bile production by 3-4-fold compared with controls (P < 0.01), and reductions in alanine aminotransferase activities were seen within 90 minutes of reperfusion (P < 0.05). These data were confirmed by improved Suzuki scores (less sinusoidal congestion, necrosis, and vacuolization) in all treated groups. Livers from the IDN-6556-treated groups had markedly reduced caspase activities and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling)-positive cells, suggesting reductions in apoptosis. IDN-6556 present in cold storage media ameliorated liver injury due to cold ischemia and reperfusion injury and may be a rational therapeutic approach to reduce the risk of liver ischemia in the clinical setting.


Subject(s)
Caspase Inhibitors , Enzyme Inhibitors/pharmacology , Pentanoic Acids/pharmacology , Reperfusion Injury/prevention & control , Temperature , Animals , Apoptosis/drug effects , Male , Models, Animal , Organ Preservation/methods , Organ Preservation Solutions/pharmacology , Rats , Rats, Sprague-Dawley , Reperfusion Injury/pathology , Treatment Outcome
2.
J Med Chem ; 48(22): 6779-82, 2005 Nov 03.
Article in English | MEDLINE | ID: mdl-16250635

ABSTRACT

A series of oxamyl dipeptides were optimized for pan caspase inhibition, anti-apoptotic cellular activity and in vivo efficacy. This structure-activity relationship study focused on the P4 oxamides and warhead moieties. Primarily on the basis of in vitro data, inhibitors were selected for study in a murine model of alpha-Fas-induced liver injury. IDN-6556 (1) was further profiled in additional in vivo models and pharmacokinetic studies. This first-in-class caspase inhibitor is now the subject of two Phase II clinical trials, evaluating its safety and efficacy for use in liver disease.


Subject(s)
Caspase Inhibitors , Liver Diseases/drug therapy , Pentanoic Acids/chemical synthesis , Adult , Alanine Transaminase/blood , Animals , Apoptosis/drug effects , Aspartate Aminotransferases/blood , Biological Availability , Caspase 3 , Cholestasis/drug therapy , Cholestasis/pathology , Clinical Trials, Phase I as Topic , Half-Life , Hepatitis C, Chronic/drug therapy , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Jurkat Cells , Liver/drug effects , Liver/pathology , Liver Diseases/enzymology , Liver Diseases/etiology , Mice , Pentanoic Acids/chemistry , Pentanoic Acids/pharmacology , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...