Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2779: 323-351, 2024.
Article in English | MEDLINE | ID: mdl-38526793

ABSTRACT

This chapter focuses on applications and protocols that involve the measurement of the fluorescence lifetime as an informative cytometric parameter. The timing of fluorescence decay has been well-studied for cell counting, sorting, and imaging. Therefore, provided herein is an overview of the techniques used, how they enhance cytometry protocols, and the modern techniques used for lifetime analysis. The background and theory behind fluorescence decay kinetic measurements in cells is first discussed followed by the history of the development of time-resolved flow cytometry. These sections are followed by a review of applications that benefit from the quantitative nature of fluorescence lifetimes as a photophysical trait. Lastly, perspectives on the modern ways in which the fluorescence lifetime is scanned at high throughputs which include high-speed microscopy and machine learning are provided.


Subject(s)
Fluorescent Dyes , Review Literature as Topic , Fluorescence , Flow Cytometry/methods , Microscopy, Fluorescence/methods , Kinetics
2.
Front Phys ; 92021 Apr.
Article in English | MEDLINE | ID: mdl-34007839

ABSTRACT

Though much of the interest in fluorescence in the past has been on measuring spectral qualities such as wavelength and intensity, there are two other highly useful intrinsic properties of fluorescence: lifetime (or decay) and anisotropy (or polarization). Each has its own set of unique advantages, limitations, and challenges in detection when it comes to use in biological studies. This review will focus on the property of fluorescence lifetime, providing a brief background on instrumentation and theory, and examine the recent advancements and applications of measuring lifetime in the fields of high-throughput fluorescence lifetime imaging microscopy (HT-FLIM) and time-resolved flow cytometry (TRFC). In addition, the crossover of these two methods and their outlooks will be discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...