Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37176918

ABSTRACT

Foliar fertilisation is known to influence the physiological response of Humulus lupulus (hop plants), but its effect on the flavour profile of beer still has to be investigated. By comparing the effects of four fertilisation treatments, this study aims at determining whether different foliar fertilisation treatments have a significant impact on hop plants' aromatic quality and that of the beer produced. Hop cones harvested from each experimental treatment were brewed to obtain five single dry-hopped beers, which were subsequently analysed. Gas chromatography-mass spectrometry (GC-MS) and electronic nose (Cyranose 320) analyses were performed on the hop cones, while headspace solid-phase microextraction-gas chromatography-mass spectrometry HS-SPME-GC-MS, electronic nose and sensory analyses were carried out on the beers produced. The analyses not only allowed for a differentiation between the hops from the four fertilisation treatments and the control but also enabled a differentiation between the beers produced for their identification. Sensory evaluation revealed consumer preferences regarding the dry-hopped beers analysed, evidencing their distinctive features, including significant differences in both aroma and flavour.

2.
Foods ; 10(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33418947

ABSTRACT

GC-FID/MS is a powerful technique used to analyze food and beverage aromas. Volatile organic compounds (VOCs) in grape berries play an important role in determining wine quality and are affected by many factors, such as climate and soil that mainly influence their relative concentrations. Wine aroma is generated by a complex mixture of compounds, and the sensory relevance of individual VOCs is far from elucidated. Herein, the VOC content (free and glycosylated) of Cannonau grape skin and juice and of Cannonau wine collected in different areas of Sardinia is explored. Wine sensory analysis was also carried out and the relationship between sensory attributes and VOCs was investigated. Although Cannonau grapes showed the same VOC fingerprint, great variability was identified between samples, although only the differences in 2-phenylethanol and benzyl alcohol concentration in the grape skins and benzyl alcohol and a terpenoid in grape juice were significantly different according to ANOVA. The correlation between VOC content and the sensory profile highlights the role played by 2-methyl-1-butanol and 2-phenylethanol in increasing wine sensory complexity.

3.
Dalton Trans ; 48(29): 10986-10995, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31215930

ABSTRACT

A new and solvent-free synthesis route has been adopted and optimized to prepare crystalline VNbO5 from the mechanochemical reaction between Nb2O5 and V2O5 as starting reagents. The substantially amorphous mixture of equimolar pentoxide V and Nb metals observed after extended mechanical treatment transforms into a crystalline powder following calcination under mild conditions at 710 K. The structure solution of the X-ray diffraction pattern using a global optimization approach, combined with Rietveld refinement, points to a space group P212121 (no. 19) different from Pnma (no. 62) previously proposed in the literature assuming it to be isostructural to VTaO5. The new space group helps to describe weak peaks that remained previously unaccounted for and allows more reliable determination of atomic fractional coordinates and interatomic distance distribution. The as-prepared VNbO5 has been tested as a dopant (5 wt%) for the purpose of solid state hydrogen storage, decreasing significantly the release of hydrogen of MgH2/Mg (620 K) and further enhancing the hydrogen sorption kinetic properties.

4.
Phys Chem Chem Phys ; 20(6): 4100-4108, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29354838

ABSTRACT

The present work concerns the catalytic effect of VNbO5, a ternary oxide prepared via a solid-state route, on the sorption performance of MgH2. Three doped systems, namely 5, 10 and 15 wt% VNbO5-MgH2 have been prepared by ball milling and thoroughly characterized. Hydrogen sorption, evaluated by temperature programmed desorption experiments, revealed a significant reduction of the desorption temperature from 330 °C for the un-doped sample (prepared and tested for comparison) to 235 °C for the VNbO5-doped sample. Furthermore, more than 5 wt% of hydrogen can be absorbed in 5 minutes at 160 °C under 20 bar of hydrogen, which is remarkable compared to the 0.7 wt% achieved for the un-doped system. The sample doped with 15 wt% of additive, showed good reversibility: over 5 wt% of hydrogen with negligible degradation even after 70 consecutive cycles at 275 °C and 50 cycles at 300 °C. The kinetics analysis carried out by Kissinger's method exhibited a considerable reduction of the activation energy for the desorption process. Finally, pressure-composition-isotherm experiments conducted at three different temperatures allowed estimating the thermodynamic stability of the system and shed light on the additive role of VNbO5.

SELECTION OF CITATIONS
SEARCH DETAIL
...