Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 24(8)2019 Apr 22.
Article in English | MEDLINE | ID: mdl-31013675

ABSTRACT

Two near-infrared fluorescent probes (A and B) containing hemicyanine structures appended to dipicolylamine (DPA), and a dipicolylamine derivative where one pyridine was substituted with pyrazine, respectively, were synthesized and tested for the identification of Zn(II) ions in live cells. In both probes, an acetyl group is attached to the phenolic oxygen atom of the hemicyanine platform to decrease the probe fluorescence background. Probe A displays sensitive fluorescence responses and binds preferentially to Zn(II) ions over other metal ions such as Cd2+ ions with a low detection limit of 0.45 nM. In contrast, the emission spectra of probe B is not significantly affected if Zn(II) ions are added. Probe A possesses excellent membrane permeability and low cytotoxicity, allowing for sensitive imaging of both exogenously supplemented Zn(II) ions in live cells, and endogenously releases Zn(II) ions in cells after treatment of 2,2-dithiodipyridine.


Subject(s)
Amines , Carbocyanines , Fluorescent Dyes , Picolinic Acids , Zinc/metabolism , Amines/chemistry , Amines/pharmacology , Carbocyanines/chemistry , Carbocyanines/pharmacology , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , HeLa Cells , Humans , Microscopy, Fluorescence , Picolinic Acids/chemistry , Picolinic Acids/pharmacology
2.
Chem Commun (Camb) ; 54(9): 1133-1136, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29334084

ABSTRACT

An aggregation-induced emission (AIE) cyanine-based fluorescent cassette with a large pseudo-Stokes shift was designed and prepared to sensitively image pH changes in live cells via through-bond energy transfer (TBET) from a tetraphenylethene (TPE) donor to a cyanine acceptor.


Subject(s)
Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Carbocyanines/chemical synthesis , Cell Survival , Energy Transfer , Ethylenes/chemistry , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Hydrogen-Ion Concentration , Molecular Structure , Quantum Theory , Spectrometry, Fluorescence
3.
ACS Sens ; 1(2): 158-165, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-27547822

ABSTRACT

Three uncommon morpholine-based fluorescent probes (A, B and C) for pH were prepared by introducing morpholine residues to BODIPY dyes at 4,4'- and 2,6-positions, respectively. In contrast to morpholine-based fluorescent probes for pH reported in literature, these fluorescent probes display high fluorescence in a basic condition while they exhibit very weak fluorescence in an acidic condition. The theoretical calculation confirmed that morpholine is unable to function as either an electron donor or an electron acceptor to quench the BODIPY fluorescence in the neutral and basic condition via photo-induced electron transfer (PET) mechanism because the LUMO energy of morpholine is higher than those of the BODIPY dyes while its HOMO energy is lower than those of the BODIPY dyes. However, the protonation of tertiary amines of the morpholine residues in an acidic environment leads to fluorescence quenching of the BODIPY dyes via d-PET mechanism. The fluorescence quenching is because the protonation effectively decreases the LUMO energy which locates between the HOMO and LUMO energies of the BODIPY dyes. Fluorescent probe C with deep-red emission has been successfully used to detect pH changes in mammalian cells.

4.
Phys Rev Lett ; 108(9): 095502, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22463647

ABSTRACT

Using Brillouin scattering, we measured the single-crystal elastic constants (C(ij)'s) of a prototypical metal-organic framework (MOF): zeolitic imidazolate framework (ZIF)-8 [Zn(2-methylimidazolate)(2)], which adopts a zeolitic sodalite topology and exhibits large porosity. Its C(ij)'s under ambient conditions are (in GPa) C(11)=9.522(7), C(12)=6.865(14), and C(44)=0.967(4). Tensorial analysis of the C(ij)'s reveals the complete picture of the anisotropic elasticity in cubic ZIF-8. We show that ZIF-8 has a remarkably low shear modulus G(min) < or approximately 1 GPa, which is the lowest yet reported for a single-crystalline extended solid. Using ab initio calculations, we demonstrate that ZIF-8's C(ij)'s can be reliably predicted, and its elastic deformation mechanism is linked to the pliant ZnN(4) tetrahedra. Our results shed new light on the role of elastic constants in establishing the structural stability of MOF materials and thus their suitability for practical applications.

5.
Phys Chem Chem Phys ; 14(5): 1614-26, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22187720

ABSTRACT

The recently discovered UiO-66/67/68 class of isostructural metallorganic frameworks (MOFs) [J. H. Cavka et al. J. Am. Chem. Soc., 2008, 130, 13850] has attracted great interest because of its remarkable stability at high temperatures, high pressures and in the presence of different solvents, acids and bases [L. Valenzano et al. Chem. Mater., 2011, 23, 1700]. UiO-66 is obtained by connecting Zr(6)O(4)(OH)(4) inorganic cornerstones with 1,4-benzene-dicarboxylate (BDC) as linker resulting in a cubic MOF, which has already been successfully reproduced in several laboratories. Here we report the first complete structural, vibrational and electronic characterization of the isostructural UiO-67 material, obtained using the longer 4,4'-biphenyl-dicarboxylate (BPDC) linker, by combining laboratory XRPD, Zr K-edge EXAFS, TGA, FTIR, and UV-Vis studies. Comparison between experimental and periodic calculations performed at the B3LYP level of theory allows a full understanding of the structural, vibrational and electronic properties of the material. Both materials have been tested for molecular hydrogen storage at high pressures and at liquid nitrogen temperature. In this regard, the use of a longer ligand has a double benefit: (i) it reduces the density of the material and (ii) it increases the Langmuir surface area from 1281 to 2483 m(2) g(-1) and the micropore volume from 0.43 to 0.85 cm(3) g(-1). As a consequence, the H(2) uptake at 38 bar and 77 K increases from 2.4 mass% for UiO-66 up to 4.6 mass% for the new UiO-67 material. This value is among the highest values reported so far but is lower than those reported for MIL-101, IRMOF-20 and MOF-177 under similar pressure and temperature conditions (6.1, 6.2 and 7.0 mass%, respectively) [A. G. Wong-Foy et al. J. Am. Chem. Soc., 2006, 128, 3494; M. Dinca and J. R. Long. Angew. Chem., Int. Ed., 2008, 47, 6766]. Nevertheless the remarkable chemical and thermal stability of UiO-67 and the absence of Cr in its structure would make this material competitive.

6.
J Chem Phys ; 123(3): 34303, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16080733

ABSTRACT

The results are presented of three-dimensional model studies of the photodissociation of the water dimer following excitation in the first absorption band. Diabatic potential-energy surfaces are used to investigate the photodissociation following excitation of the hydrogen bond donor molecule and of the hydrogen bond acceptor molecule. In both cases, the degrees of freedom considered are the two OH-stretch modes of the molecule being excited, and the dimer stretch vibration. The diabatic potentials are based on adiabatic potential surfaces computed with the multireference configuration-interaction method, and the dynamics of dissociation was studied using the time-dependent wave-packet method. The dynamics calculations yield a donor spectrum extending over roughly the same range of frequencies as the spectrum of the water monomer computed at the same level of theory. The acceptor spectrum has the same width as the monomer spectrum, but is shifted to the blue by 0.4-0.5 eV. The dimer spectrum obtained by averaging the donor and the acceptor spectrum is broader than the monomer spectrum, with the center of the dimer first absorption band shifted to the blue by about 0.2 eV relative to the monomer band. Our reduced dimensionality calculations do not find the red tail predicted for the dimer first absorption band by Harvey et al. [J. Chem. Phys. 109, 8747 (1998)]. This conclusion also holds if preexcitation of the dimer stretch vibration with one or two quanta is considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...