Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(3): 3745-3753, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091221

ABSTRACT

The introduction of Cu ions onto ZnO leads to alterations in the electrical, optical, and magnetic characteristics of ZnO. These transformations, in turn, result in heightened photocatalytic activity and enhanced stability when employed in the degradation of both organic and inorganic pollutants. Here, a novel photocatalytic-adsorbent system is developed using zinc oxide (ZnO) nanostructures modified with Cu (II) ions in an aqueous solution containing 40 mg/L of As (III). The system utilizes UV-A light (365 nm) as the irradiation source, and the weight percentage of Cu (II) in the composite varies from 0 to 20%. The experimental results reveal significant adsorption of As (III), ranging from 20 to 50%, depending on the solution's Cu (II) content. Remarkably, the ZnO10%Cu composite exhibits the highest photocatalytic activity, achieving 40% adsorption and complete oxidation of As (III) within 25 min of irradiation. Characterization of the composite after the photocatalytic treatment reveals the effective adsorption of As (V) within its structure. Furthermore, no traces of Cu (II) ions are detected in the solution after the reaction, indicating their successful adsorption onto the ZnO surface as Cu (I) and Cu (II) ions. This research marks a significant advancement in harnessing innovative materials for efficient arsenic removal, offering promising insights into the development of novel photocatalytic-adsorbent systems.


Subject(s)
Zinc Oxide , Zinc Oxide/chemistry , Adsorption , Ultraviolet Rays , Oxidation-Reduction , Ions
2.
Environ Sci Pollut Res Int ; 29(56): 84056-84075, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36251197

ABSTRACT

Among various advanced oxidation processes for wastewater treatment, heterogeneous catalytic ozonation (HCO) has a growing interest in pollutant degradation, e.g., pesticides, pharmaceuticals, cresols, detergents, polymers, dyes, and others. Direct oxidation with ozone can occur by this route or indirectly, generating reactive oxygen species through the catalytic activation of the ozone molecule. Then, many catalytic materials were evaluated, such as unsupported and supported oxides, activated carbon, nanocarbons, carbon nitride, and mesoporous materials. This review focuses on the properties and performance of Ni-based catalysts (NiO, supported NiO, Ni ferrites, and M-Ni bimetallic), emphasizing the reaction mechanisms and the importance of the reactive oxygen species in removing toxic organic compounds.


Subject(s)
Environmental Pollutants , Ozone , Water Pollutants, Chemical , Water Purification , Reactive Oxygen Species , Catalysis
3.
Materials (Basel) ; 15(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955219

ABSTRACT

Graphene-TiO2 composites have been investigated in various photocatalytic reactions showing successful synergy compared to pristine TiO2. In the present work, graphene oxide (GO) was synthesized by the Hummers method and then reduced graphene oxide-TiO2 composites (rGO/TiO2) were obtained by an in situ GO photoreduction route. X-ray diffraction, FTIR, Raman, UV-vis DRS, and photoluminescence were the main characterization techniques. The obtained composites containing 1 and 3 wt.% rGO were evaluated in the cyanide (50 mg/L) oxidation and Au-cyanide complex (300 mg/L) degradation under UV-A light. The composites showed higher photocatalytic activity than TiO2, mainly with the 1% rGO content. Cyanate and gold nanoparticles, deposited on the photocatalyst's surface, were the main byproducts during the photocatalyst assessment. The improved photocatalytic activity of the composites was attributed to a higher rate of electron transfer and a lower rate of charge recombination due to the chemical interaction of rGO with TiO2.

4.
J Hazard Mater ; 386: 121643, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31780290

ABSTRACT

In this work, we report a facile strategy for 4-nitrophenol (4-NP) sensing using highly luminescent nitrogen-doped oxidized carbon dots. The quenching of fluorescence (turn OFF), with the addition of trace amounts of organic pollutant (4-NP) in NOCDs, has been attributed to the complete reduction of nitrogen-doped oxidized carbon dots (NOCDs) to reduced nitrogen-doped oxidized carbon dots (rNOCDs) and its formation was confirmed by infrared, X-ray diffraction and X-ray photoelectron spectroscopy measurements. The chemical changes in oxygen-containing functional groups of NOCDs, in the presence of 4-NP, are elucidated and corresponding characterization through XPS reveals the changes in the peak intensities of CC (284.5 eV) and OCO (288.6 eV), indicating a decrement in hydroxyl groups that hinder its complete reduction to NOCDs. The sensitivity of NOCDs towards 4-NP has been tested in spiked tap water in the concentration range 2 µM to 2 mM with the minimum detection limit of 2 µM (linear detection range from 2 to 100 µM with regression coefficient R2 =0.99). The proposed simple sensing platform can be used to reduce NOCDs and simultaneously sense low concentrations of 4-NP. Finally, an effective treatment to improve the reduction of nitrogen-doped graphene oxide is proposed.

5.
Photochem Photobiol Sci ; 14(3): 597-602, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25737416

ABSTRACT

The photosensitized oxidation of 9,10-dimethylanthracene with singlet oxygen in acetonitrile was investigated using a safranin O/silica composite as an heterogeneous delivery system of the photosensitizer. The only detected product was the corresponding endoperoxide (9,10-endoperoxianthracene) and its formation rate depended on the initial concentration of DMA, the light intensity and the amount of the composite. The kinetics of this reaction was compared with that of the reported kinetic model of photosensitized oxidations of organic compounds in homogeneous reactions. It was found that both reactions followed the same model, suggesting that the actual reaction between photoproduced singlet oxygen and 9,10-dimethylanthracene was performed in homogeneous media and the surface of the composite was not involved in the reaction.

6.
J Hazard Mater ; 262: 472-81, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24076483

ABSTRACT

2,4-Dichlorophenoxyacetic acid (2,4-D) is usually used as a refractory model compound that requires a prolonged reaction time for mineralization. In this study, we found that nickel oxide (NiO) significantly improved 2,4-D degradation and mineralization in reaction with ozone. Other metal oxides, such as titania, silica and alumina, were also tested in this reaction, so that, the mineralization degree was almost the same for all of them (ca. 25%), whereas NiO showed more than 60% in 1h. These outstanding results led us to study in more depth the role of NiO as catalyst in the degradation of 2,4-D. For instance, the optimum NiO loading amount was 0.3 g L(-1). The catalytic ozonation showed a high stability after three reaction cycles. With the aim of identifying the surface species responsible for the high activity of NiO, besides knowing the byproducts during the degradation of 2,4-D, XPS and HPLC were mainly used as analytical tools. According to the results, the mineralization of 2,4-D was directly influenced by the adsorbed chlorate organic compounds and oxalate group onto NiO. Therefore, NiO plays a true role as a catalyst forming surface compounds which are subsequently decomposed causing an increase in the mineralization efficiency. In addition, it was possible to identify several degradation byproducts (2,4-diclorophenol, glycolic, fumaric, maleic and oxalic acids) that were included in a rational reaction pathway. It was proposed that 2,4-D elimination in presence of NiO as catalyst is a combination of processes such as: conventional ozonation, indirect mechanism (OH) and surface complex formation.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/chemistry , Herbicides/chemistry , Nickel/chemistry , Oxidants/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Photoelectron Spectroscopy , Water Purification/methods
7.
In. Canada. Canadian Chemical Producer's Association. Proceedings : Dangerous goods emergency response' 89Comptes rendus : Marchandises dangereuses intervention d'urgence' 89. Nova Scotia, Canada. The Canadian Chemical Producer's Association, May 1989. p.167-76, tab.
Monography in En | Desastres -Disasters- | ID: des-9778

ABSTRACT

This paper provides comprehensive information on the environmental response to a fire at the pesticide warehouse in Canning, Novoa Scotia on 31 May, 1986. The incident is described in detail. The roles and activities of the agencies involved are discussed and observations made. Results of the sampling, analytical and clean-up efforts are highlighted. Pesticide levels in milk, drinking water, run-off water, soils, biota and in the habitant river are provided. (AU)


Subject(s)
Chemical Industry , Disaster Planning , Chemical Hazard Release , 34661
SELECTION OF CITATIONS
SEARCH DETAIL
...