Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37177232

ABSTRACT

The great geometric complexity that additive manufacturing allows in parts, together with the possibility of combining several materials in the same part, establishes a new design and manufacturing paradigm. Despite the interest of many leading sectors, the lack of standardization still makes it necessary to carry out characterization work to enjoy these advantages in functional parts. In many of these techniques, the process does not end with the end of the machine cycle, but different post-processing must be carried out to consider the part finished. It has been found that the type of post process applied can have a similar effect on part quality as other further studied process parameters. In this work, the material projection technique was used to manufacture multi-material parts combining resins with different mechanical properties. The influence of different post-processing on the tensile behavior of these parts was analyzed. The results show the detrimental effect of ultrasonic treatment with isopropyl alcohol in the case of the more flexible resin mixtures, being advisable to use ultrasonic with mineral oil or furnace treatment. For more rigid mixtures, the furnace is the best option, although the other post-processing techniques do not significantly deteriorate their performance.

2.
Syst Biol ; 71(6): 1471-1486, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35689634

ABSTRACT

The concept that complex ancestral traits can never be recovered after their loss is still widely accepted, despite phylogenetic and molecular approaches suggest instances where phenotypes may have been lost throughout the evolutionary history of a clade and subsequently reverted back in derived lineages. One of the first and most notable examples of such a process is wing evolution in phasmids; this polyneopteran order of insects, which comprises stick and leaf insects, has played a central role in initiating a long-standing debate on the topic. In this study, a novel and comprehensive time tree including over 300 Phasmatodea species is used as a framework for investigating wing evolutionary patterns in the clade. Despite accounting for several possible biases and sources of uncertainty, macroevolutionary analyses consistently revealed multiple reversals to winged states taking place after their loss, and reversibility is coupled with higher species diversification rates. Our findings support a loss of or reduction in wings that occurred in the lineage leading to the extant phasmid most recent common ancestor, and brachyptery is inferred to be an unstable state unless co-opted for nonaerodynamic adaptations. We also explored how different assumptions of wing reversals probability could impact their inference: we found that until reversals are assumed to be over 30 times more unlikely than losses, they are consistently inferred despite uncertainty in tree and model parameters. Our findings demonstrate that wing evolution is a reversible and dynamic process in phasmids and contribute to our understanding of complex trait evolution. [Dollo's law; Phasmatodea; phylogenetic comparative methods; polyneoptera; reversals; wing.].


Subject(s)
Biological Evolution , Wings, Animal , Animals , Insecta/genetics , Phylogeny
3.
Zootaxa ; 5208(1): 1-72, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-37045408

ABSTRACT

The genus Pterinoxylus Serville, 1838 is redescribed and revised at the species level. It is distributed throughout most of Central America, the northern half of South America and also has one species on the Lesser Antilles. Detailed descriptions, notes on intraspecific variability and illustrations are provided for all six known species. Keys are presented to distinguish males, females and eggs. Two new species are described from Costa Rica: P. cocoense n. sp. from both sexes and the eggs and P. speciosus n. sp. from both sexes. The female of P. perarmatus (Redtenbacher, 1908) is described and illustrated for the first time, as are the eggs of the type-species P. eucnemis Serville, 1838 and P. perarmatus (Redtenbacher, 1908). The external morphology of all species shows considerable intraspecific variability, which is discussed and illustrated. While P. cocoense n. sp. is an endemic and the only stick insects that has so far become known from Cocos Island a small island some 550 km off the Costa Rican Pacific coast, all other species appear to have fairly wide distributional ranges. Maps show the distributions of all six known species. Type-specimens of the two newly described species are deposited in the collections of MNCR-A (Costa Rica) and Zoologisches Museum und Universität, Hamburg, Germany (ZMUH).


Subject(s)
Neoptera , Male , Female , Animals , Costa Rica
4.
Zootaxa ; 4814(1): zootaxa.4814.1.1, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-33055727

ABSTRACT

The present paper describes 16 new species and one new genus from French Guiana and numerous taxonomic changes are proposed prior to the publication of a comprehensive guide to the Phasmatodea of French Guiana. The following 16 new species are described and illustrated: Phanocles procerus n. sp., Phanocloidea lobulatipes n. sp., Cladomorphus guianensis n. sp., Hirtuleius gracilis n. sp., Parastratocles rosanti n. sp., Parastratocles fuscomarginatus n. sp., Paraprisopus apterus n. sp., Paraprisopus multicolorus n. sp., Agrostia longicerca n. sp., Isagoras similis n. sp., Paragrostia brulei n. sp., Prexaspes globosicaput n. sp., Prexaspes guianensis n. sp., Dinelytron cahureli n. sp., Prisopus clarus n. sp. and Prisopus conocephalus n. sp.. The new genus Paragrostia n. gen. is established for the newly described Paragrostia brulei n. sp. and Paragrostia flavimaculata (Heleodoro, Mendes Rafael, 2017) n. comb. the latter of which is here transferred from Agrostia Redtenbacher, 1906.                Fifty-six new combinations are proposed with species transferred to other genera: Bacteria pallidenotata Redtenbacher, 1908, is transferred to Phanocloidea Zompro, 2001 (n. comb.); Bacteria maroniensis Chopard, 1911 is transferred to Phanocles Stål, 1875 (n. comb.); Cladomorphus gibbosus (Chopard, 1911) is transferred to Hirtuleius Stål, 1875 (n. comb.); Stratocles soror Redtenbacher, 1906, Parastratocles lugubris (Redtenbacher, 1906) and Parastratocles cryptochloris (Rehn, 1904) are transferred to Brizoides Redtenbacher, 1906 (n. comb.); Stratocles xanthomela (Olivier, 1792), Stratocles forcipatus Bolívar, 1896 and Stratocles tessulatus (Olivier, 1792) are transferred to Parastratocles (n. comb.); Olcyphides cinereus (Olivier, 1792), Perliodes affinis Redtenbacher, 1906, Perliodes nigrogranulosus Redtenbacher, 1906, Perliodes sexmaculatus Redtenbacher, 1906, Isagoras rugicollis (Gray, 1835), Isagoras sauropterus Rehn, 1947, Brizoides viridipes (Rehn, 1905) and Brizoides graminea Redtenbacher, 1906 are transferred to Agrostia Redtenbacher, 1906 (n. comb.); Agrostia flavimaculata Heleodoro, Mendes Rafael, 2017 is transferred to Paragrostia n. gen. (n. comb.); Isagoras affinis Chopard, 1911, Isagoras chocoensis Hebard, 1921, Isagoras metricus Rehn, 1947 and Isagoras schraderi Rehn, 1947 are transferred to Tenerella Redtenbacher, 1906 (n. comb.); Xerosoma glyptomerion Rehn, 1904 is transferred to Isagoras Stål, 1875 (n. comb.); Isagoras venosus (Burmeister, 1838), Paraphasma paulense Rehn, 1918 and Paraphasma quadratum (Bates, 1865) are transferred to Prexaspes Stål, 1875 (n. comb.); Prexaspes (Prexaspes) cneius (Westwood, 1859) is transferred to Tenerella Redtenbacher, 1906 (n. comb.); Prexaspes lateralis (Fabricius, 1775) is transferred to Paraphasma Redtenbacher, 1906 (n. comb.); Isagoras santara (Westwood, 1859) and Prexaspes olivaceus Chopard, 1911 are transferred to Periphloea Redtenbacher, 1906 (n. comb.); Dinelytron agrion Westwood, 1859 is transferred to Paraprisopus Redtenbacher, 1906 (n. comb.); Anarchodes atrophicus (Pallas, 1772) is transferred to Ignacia Rehn, 1904 (n. comb.); Planudes asperus Bellanger Conle, 2013, Planudes brunni Redtenbacher, 1906, Planudes cortex Hebard, 1919, Planudes crenulipes Rehn, 1904, Planudes funestus Redtenbacher, 1906, Planudes melzeri Piza, 1937, Planudes molorchus (Westwood, 1859), Planudes paxillus (Westwood, 1859), Planudes perillus Stål, 1875, Planudes pygmaeus (Redtenbacher, 1906) and Planudes taeniatus Piza, 1944 are transferred to Isagoras Stål, 1875 (n. comb.); Prisopoides atrobrunneus Heleodoro Rafael, 2020, Prisopoides brunnescens Heleodoro Rafael, 2020, Prisopoides caatingaensis Heleodoro Rafael, 2020 and Prisopoides villosipes (Redtenbacher, 1906) are transferred to Prisopus Peletier de Saint Fargeau Serville, 1828 (n. comb.); Melophasma antillarum (Caudell, 1914), Melophasma brachypterum Conle, Hennemann Gutiérrez, 2011, Melophasma colombianum Conle, Hennemann Gutiérrez, 2011 and Melophasma vermiculare Redtenbacher, 1906 are transferred to Paraprisopus Redtenbacher, 1906 (n. comb.); Prexaspes (Elasia) ambiguus (Stoll, 1813), Prexaspes (Elasia) brevipennis (Burmeister, 1838), Prexaspes (Elasia) pholcus (Westwood, 1859), Prexaspes (Elasia) viridipes Redtenbacher, 1906 and Prexaspes (Elasia) vittata (Piza, 1985) are transferred to Prexaspes Stål, 1875 (n. comb.).                Twenty-six new synonymies are established: Perliodes Redtenbacher, 1906 and Chlorophasma Redtenbacher, 1906 are synonymised with Agrostia Redtenbacher, 1906 (n. syn.); Chlorophasma Redtenbacher, 1906 is synonymised with Agrostia Redtenbacher, 1906 (n. syn.); Elasia Redtenbacher, 1906 is synonymised with Prexaspes Stål, 1875 (n. syn.); Prisopoides Heleodoro Rafael, 2020 is synonymised with Prisopus Peletier de Saint Fargeau Serville, 1828 (n. syn.); Melophasma Redtenbacher, 1906 is synonymised with Paraprisopus Redtenbacher, 1906 (n. syn.); Bacteria crassipes Chopard, 1911 is synonymised with Bacteria pallidenotata Redtenbacher, 1908 (n. syn.); Perliodes grisescens Redtenbacher, 1906 and Metriophasma (Metriophasma) pallidum (Chopard, 1911) are synonymised with Agrostia cinerea (Olivier, 1792) (n. syn.); Perliodes nigrogranulosus Redtenbacher, 1906 and Metriophasma (Metriophasma) ocellatum (Piza, 1937) are synonymised with Isagoras rugicollis (Gray, 1835) (n. syn.); Isagoras chopardi Hebard, 1933 is synonymised with Tenerella cneius (Westwood, 1859) (n. syn.); Isagoras proximus Redtenbacher, 1906 is synonymised with Isagoras glyptomerion (Rehn, 1904) (n. syn.); Chlorophasma hyalina Redtenbacher, 1906 is synonymised with Agrostia graminea (Redtenbacher, 1906) (n. syn.); Isagoras nitidus Redtenbacher, 1906 is synonymised with Anisa flavomaculatus (Gray, 1835) (n. syn.); Prexaspes acuticornis (Gray, 1835) is synonymised with Prexaspes servillei (Gray, 1835) (n. syn.); Prexaspes nigromaculatus Chopard, 1911 is synonymised with Periphloea santara (Westwood, 1859) (n. syn.); Prexaspes (Elasia) janus Kirby, 1904 is synonymised with Paraphasma maculatum (Gray, 1835) (n. syn.); Prexaspes dictys (Westwood, 1859) is synonymised with Prexaspes brevipennis (Burmeister, 1838) (n. syn.); Parastratocles aeruginosus Redtenbacher, 1906: 107 is synonymised with Parastratocles forcipatus Bolívar, 1896 (n. syn.); Parastratocles carbonarius (Redtenbacher, 1906: 106) is synonymised with Parastratocles lugubris (Redtenbacher, 1906) (n. syn.); Prisopus spinicollis Burmeister, 1838, Prisopus spiniceps Burmeister, 1838 and Prisopus cornutus Gray, 1835 are synonymised with Prisopus ohrtmanni (Lichtenstein, 1802) (n. syn.); the genus Planudes Stål, 1875 is synonymised with Isagoras Stål, 1875 (n. syn.); Pseudophasma annulipes (Redtenbacher, 1906) is synonymised with Pseudophasma blanchardi (Westwood, 1859) (n. syn.); Ignacia appendiculatum (Kirby, 1904) is synonymised with Anarchodes atrophicus (Pallas, 1772) (n. syn.).                Isagoras obscurum Guérin-Méneville, 1838 is shown to have been erroneously synonymised with Isagoras rugicollis (Gray, 1835) and is here re-established as a valid species (rev. stat.). Pseudophasma castaneum (Bates, 1865) is re-established as a valid species here (rev. stat.).                Paraprisopus Redtenbacher, 1906 and the entire tribe Paraprisopodini are transferred to Pseudophasmatidae: Pseudophasmatinae (n. comb.).                Lectotypes are designated for Perliodes grisescens Redtenbacher, 1906, Isagoras plagiatus Redtenbacher, 1906.Neotypes are designated for Agrostia cinerea (Olivier, 1792), Prexaspes ambiguus (Stoll, 1813), Prisopus horridus (Gray, 1835) and Prisopus sacratus (Olivier, 1792).


Subject(s)
Coleoptera , Heteroptera , Animals , French Guiana , Neoptera
5.
J Pharm Sci ; 108(1): 485-493, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30009799

ABSTRACT

The modern rotary pharmaceutical tablet press is capable of accepting or rejecting individual tablets based on the measured compression force of the tablet. Because during steady operation, each tablet is compressed to the same thickness, a larger compression force implies a heavier tablet. Tablets that are too heavy likely contain more than the desired content of drug substance. The measured compression force thus becomes an important input to the overall control strategy, and variability in the compression force from one tablet to the next corresponds directly with the uniformity of dosage units. This provides an extraordinary opportunity to use the instantaneous compression force signal as a process analytical technology to make product collection decisions on every individual tablet. Only 1 question requires investigation: how to set the main compression force limits to achieve the desired tablet weights? In this work, a small-scale characterization method and associated mathematical model are developed to answer this question.


Subject(s)
Tablets/chemistry , Drug Compounding/methods , Models, Theoretical , Pressure
6.
Zootaxa ; 4058(4): 535-50, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26701544

ABSTRACT

Male, female and egg of Pijnackeria recondita sp. n. are described from specimens collected at about 2,000 m in Sierra Nevada (Spain) feeding on Cytisus scoparius. The number of antennae segments in males, the smooth thorax in females and the different sculpturing of the egg capsule are the main differences from the other species of the genus. In addition, DNA barcode sequences (COI and COII) clearly differ from the other Iberian species of the genus. For COI, K2P minim-um distance between the new species and the most morphological related species, Pijnackeria hispanica (Bolívar, 1878), showed a mean of 8%. In the case of COII, comparison with the other species of Pijnackeria, showed a K2P minimum distance range from 8 to 10.5% (mean 9.2%); and comparison with the species of the related genus Leptynia, showed a K2P minimum distance range from 7.1 to 10.5%.


Subject(s)
DNA Barcoding, Taxonomic , Insecta/anatomy & histology , Insecta/classification , Animals , Female , Insecta/genetics , Male , Ovum , Spain , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...