Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Eur J Transl Myol ; 33(4)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38112612

ABSTRACT

Skeletal muscle possesses regenerative potential via satellite cells, compromised in muscular dystrophies leading to fibrosis and fat infiltration. Angiotensin II (Ang-II) is commonly associated with pathological states. In contrast, Angiotensin (1-7) [Ang-(1-7)] counters Ang-II, acting via the Mas receptor. While Ang-II affects skeletal muscle regeneration, the influence of Ang-(1-7) remains to be elucidated. Therefore, this study aims to investigate the role of Ang-(1-7) in skeletal muscle regeneration. C2C12 cells were differentiated in the absence or presence of 10 nM of Ang-(1-7). The diameter of myotubes and protein levels of myogenin and myosin heavy chain (MHC) were determined. C57BL/6 WT male mice 16-18 weeks old) were randomly assigned to injury-vehicle, injury-Ang-(1-7), and control groups. Ang-(1-7) was administered via osmotic pumps, and muscle injury was induced by injecting barium chloride to assess muscle regeneration through histological analyses. Moreover, embryonic myosin (eMHC) and myogenin protein levels were evaluated. C2C12 myotubes incubated with Ang-(1-7) showed larger diameters than the untreated group and increased myogenin and MHC protein levels during differentiation. Ang-(1-7) administration enhances regeneration by promoting a larger diameter of new muscle fibers. Furthermore, higher numbers of eMHC (+) fibers were observed in the injured-Ang-(1-7), which also had a larger diameter. Moreover, eMHC and myogenin protein levels were elevated, supporting enhanced regeneration due to Ang-(1-7) administration. Ang-(1-7) effectively promotes differentiation in vitroand improves muscle regeneration in the context of injuries, with potential implications for treating muscle-related disorders.

2.
Biol Res ; 56(1): 30, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291645

ABSTRACT

BACKGROUND: Skeletal muscle is sensitive to bile acids (BA) because it expresses the TGR5 receptor for BA. Cholic (CA) and deoxycholic (DCA) acids induce a sarcopenia-like phenotype through TGR5-dependent mechanisms. Besides, a mouse model of cholestasis-induced sarcopenia was characterised by increased levels of serum BA and muscle weakness, alterations that are dependent on TGR5 expression. Mitochondrial alterations, such as decreased mitochondrial potential and oxygen consumption rate (OCR), increased mitochondrial reactive oxygen species (mtROS) and unbalanced biogenesis and mitophagy, have not been studied in BA-induced sarcopenia. METHODS: We evaluated the effects of DCA and CA on mitochondrial alterations in C2C12 myotubes and a mouse model of cholestasis-induced sarcopenia. We measured mitochondrial mass by TOM20 levels and mitochondrial DNA; ultrastructural alterations by transmission electronic microscopy; mitochondrial biogenesis by PGC-1α plasmid reporter activity and protein levels by western blot analysis; mitophagy by the co-localisation of the MitoTracker and LysoTracker fluorescent probes; mitochondrial potential by detecting the TMRE probe signal; protein levels of OXPHOS complexes and LC3B by western blot analysis; OCR by Seahorse measures; and mtROS by MitoSOX probe signals. RESULTS: DCA and CA caused a reduction in mitochondrial mass and decreased mitochondrial biogenesis. Interestingly, DCA and CA increased LC3II/LC3I ratio and decreased autophagic flux concordant with raised mitophagosome-like structures. In addition, DCA and CA decreased mitochondrial potential and reduced protein levels in OXPHOS complexes I and II. The results also demonstrated that DCA and CA decreased basal, ATP-linked, FCCP-induced maximal respiration and spare OCR. DCA and CA also reduced the number of cristae. In addition, DCA and CA increased the mtROS. In mice with cholestasis-induced sarcopenia, TOM20, OXPHOS complexes I, II and III, and OCR were diminished. Interestingly, the OCR and OXPHOS complexes were correlated with muscle strength and bile acid levels. CONCLUSION: Our results showed that DCA and CA decreased mitochondrial mass, possibly by reducing mitochondrial biogenesis, which affects mitochondrial function, thereby altering potential OCR and mtROS generation. Some mitochondrial alterations were also observed in a mouse model of cholestasis-induced sarcopenia characterised by increased levels of BA, such as DCA and CA.


Subject(s)
Cholestasis , Sarcopenia , Animals , Mice , Sarcopenia/metabolism , Sarcopenia/pathology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Mitochondria , Disease Models, Animal , Cholestasis/metabolism , Cholestasis/pathology
3.
Biol Res ; 56(1): 28, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37237400

ABSTRACT

BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.


Subject(s)
Sarcopenia , Mice , Animals , Sarcopenia/chemically induced , Sarcopenia/pathology , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Troponin I/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism
4.
Adv Exp Med Biol ; 1408: 183-199, 2023.
Article in English | MEDLINE | ID: mdl-37093428

ABSTRACT

Muscle atrophy decreases muscle mass with the subsequent loss of muscle function. Among the mechanisms that trigger sarcopenia is mitochondrial dysfunction. Mitochondria, whose primary function is to produce ATP, are dynamic organelles that present the process of formation (mitogenesis) and elimination (mitophagy). Failure of any of these processes contributes to mitochondrial malfunction. Mitogenesis is mainly controlled by Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α), a transcriptional coactivator that regulates the expression of TFAM, which participates in mitogenesis. Mitophagy is a process of selective autophagy. Autophagy corresponds to a degradative pathway of protein complexes and organelles. Liver disease caused sarcopenia and increased bile acids in the blood. We demonstrated that the treatment with cholic (CA) or deoxycholic (DCA) bile acids generates mitochondrial dysfunction and loss of biomass. This work assessed whether CA and DCA alter autophagy and mitogenesis. For this, western blot evaluated the autophagy process by determining the protein levels of the LC3II/LC3I ratio. In addition, we assessed mitogenesis using a luciferase-coupled plasmid reporter for the PGC-1α promoter and the protein levels of TFAM by western blot. Our results indicate that treatment with CA or DCA induces autophagy, represented by an increase in the LC3II/LC3I ratio. In addition, a decreased autophagic flux was observed. On the other hand, when treated with CA or DCA, a decrease in the activity of the PGC-1α promoter was observed. However, the levels of TFAM increased in myotubes incubated with CA and DCA. Our results demonstrate that CA and DCA modulate autophagy ad mitogenesis in C2C12 myotubes.


Subject(s)
Muscular Diseases , Sarcopenia , Humans , Muscle, Skeletal/metabolism , Sarcopenia/pathology , Bile Acids and Salts , Muscle Fibers, Skeletal/metabolism , Autophagy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
5.
Adv Exp Med Biol ; 1408: 219-234, 2023.
Article in English | MEDLINE | ID: mdl-37093430

ABSTRACT

Fibrosis is a condition characterized by an increase in the components of the extracellular matrix (ECM). In skeletal muscle, the cells that participate in the synthesis of ECM are fibroblasts, myoblasts, and myotubes. These cells respond to soluble factors that increase ECM. Fibrosis is a phenomenon that develops in conditions of chronic inflammation, extensive lesions, or chronic diseases. A pathological condition with muscle weakness and increased bile acids (BA) in the blood is cholestatic chronic liver diseases (CCLD). Skeletal muscle expresses the membrane receptor for BA called TGR5. To date, muscle fibrosis in CCLD has not been evaluated. This study aims to assess whether BA can induce a fibrotic condition in muscle fibroblasts, myoblasts, and myotubes. The cells were incubated with deoxycholic (DCA) and cholic (CA) acids, and fibronectin protein levels were evaluated by Western blot. In muscle fibroblasts, both DCA and CA induced an increase in fibronectin protein levels. The same response was found in fibroblasts when activating TGR5 with the specific receptor agonist (INT-777). Interestingly, DCA reduced fibronectin protein levels in both myoblasts and myotubes, while CA did not show changes in fibronectin protein levels in myoblasts and myotubes. These results suggest that DCA and CA can induce a fibrotic phenotype in muscle-derived fibroblasts. On the other hand, DCA decreased the fibronectin in myoblasts and myotubes, whereas CA did not show any effect in these cell populations. Our results show that BA has different effects depending on the cell population to be analyzed.


Subject(s)
Fibronectins , Muscle Fibers, Skeletal , Humans , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Fibrosis , Fibroblasts/metabolism
6.
Nutrients ; 15(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36839267

ABSTRACT

Chronic obstructive pulmonary disease (COPD) patients manifest muscle dysfunction and impaired muscle oxidative capacity, which result in reduced exercise capacity and poor health status. This study examined the effects of 12-week eccentric (ECC) and concentric (CONC) cycling training on plasma markers of cardiometabolic health, oxidative stress, and inflammation in COPD patients. A randomized trial in which moderate COPD was allocated to ECC (n = 10; 68.2 ± 10.0 year) or CONC (n = 10; 71.1 ± 10.3 year) training groups. Participants performed 12-week ECC or CONC training, 2-3 sessions per week, 10 to 30 min per session. Before and after training, peak oxygen consumption, maximal power output (VO2peak and POmax), and time-to-exhaustion (TTE) tests were performed. Plasma antioxidant and oxidative markers, insulin resistance, lipid profile, and systemic inflammation markers were measured before and after training at rest. VO2peak, POmax and TTE remained unchanged after ECC and CONC. CONC induced an increase in antioxidants (p = 0.01), while ECC decreased antioxidant (p = 0.02) markers measured at rest. CONC induced lesser increase in oxidative stress following TTE (p = 0.04), and a decrease in insulin resistance (p = 0.0006) compared to baseline. These results suggest that CONC training induced an increase in insulin sensitivity, antioxidant capacity at rest, and lesser exercise-induced oxidative stress in patients with moderate COPD.


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Pulmonary Disease, Chronic Obstructive , Humans , Antioxidants/metabolism , Cardiovascular Diseases/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress , Pulmonary Disease, Chronic Obstructive/metabolism
7.
Biol. Res ; 56: 30-30, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1513742

ABSTRACT

BACKGROUND: Skeletal muscle is sensitive to bile acids (BA) because it expresses the TGR5 receptor for BA. Cholic (CA) and deoxycholic (DCA) acids induce a sarcopenia-like phenotype through TGR5-dependent mechanisms. Besides, a mouse model of cholestasis-induced sarcopenia was characterised by increased levels of serum BA and muscle weakness, alterations that are dependent on TGR5 expression. Mitochondrial alterations, such as decreased mitochondrial potential and oxygen consumption rate (OCR), increased mitochondrial reactive oxygen species (mtROS) and unbalanced biogenesis and mitophagy, have not been studied in BA-induced sarcopenia.METHODS: We evaluated the effects of DCA and CA on mitochondrial alterations in C2C12 myotubes and a mouse model of cholestasis-induced sarcopenia. We measured mitochondrial mass by TOM20 levels and mitochondrial DNA; ultrastructural alterations by transmission electronic microscopy; mitochondrial biogenesis by PGC-1α plasmid reporter activity and protein levels by western blot analysis; mitophagy by the co-localisation of the MitoTracker and LysoTracker fluorescent probes; mitochondrial potential by detecting the TMRE probe signal; protein levels of OXPHOS complexes and LC3B by western blot analysis; OCR by Seahorse measures; and mtROS by MitoSOX probe signals. RESULTS: DCA and CA caused a reduction in mitochondrial mass and decreased mitochondrial biogenesis. Interestingly, DCA and CA increased LC3II/LC3I ratio and decreased autophagic flux concordant with raised mitophagosome-like structures. In addition, DCA and CA decreased mitochondrial potential and reduced protein levels in OXPHOS complexes I and II. The results also demonstrated that DCA and CA decreased basal, ATP-linked, FCCP-induced maximal respiration and spare OCR. DCA and CA also reduced the number of cristae. In addition, DCA and CA increased the mtROS. In mice with cholestasis-induced sarcopenia, TOM20, OXPHOS complexes I, II and III, and OCR were diminished. Interestingly, the OCR and OXPHOS complexes were correlated with muscle strength and bile acid levels. CONCLUSION: Our results showed that DCA and CA decreased mitochondrial mass, possibly by reducing mitochondrial biogenesis, which affects mitochondrial function, thereby altering potential OCR and mtROS generation. Some mitochondrial alterations were also observed in a mouse model of cholestasis-induced sarcopenia characterised by increased levels of BA, such as DCA and CA.


Subject(s)
Animals , Mice , Cholestasis/metabolism , Cholestasis/pathology , Sarcopenia/metabolism , Sarcopenia/pathology , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Disease Models, Animal , Mitochondria
8.
Biol. Res ; 56: 28-28, 2023. ilus, graf, tab
Article in English | LILACS | ID: biblio-1513740

ABSTRACT

BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.


Subject(s)
Animals , Mice , Sarcopenia/chemically induced , Sarcopenia/pathology , Ursodeoxycholic Acid/metabolism , Ursodeoxycholic Acid/pharmacology , Muscle, Skeletal/metabolism , Troponin I/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Mice, Inbred C57BL
9.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36139784

ABSTRACT

Cholestatic chronic liver disease is characterized by developing sarcopenia and elevated serum levels of bile acids. Sarcopenia is a skeletal muscle disorder with the hallmarks of muscle weakness, muscle mass loss, and muscle strength decline. Our previous report demonstrated that deoxycholic acid (DCA) and cholic acid (CA), through the membrane receptor TGR5, induce a sarcopenia-like phenotype in myotubes and muscle fibers. The present study aimed to evaluate the impact of DCA and CA on mitochondrial mass and function in muscle fibers and the role of the TGR5 receptor. To this end, muscle fibers obtained from wild-type and TGR5-/- mice were incubated with DCA and CA. Our results indicated that DCA and CA decreased mitochondrial mass, DNA, and potential in a TGR5-dependent fashion. Furthermore, with TGR5 participation, DCA and CA also reduced the oxygen consumption rate and complexes I and II from the mitochondrial electron transport chain. In addition, DCA and CA generated more mitochondrial reactive oxygen species than the control, which were abolished in TGR5-/- mice muscle fibers. Our results indicate that DCA and CA induce mitochondrial dysfunction in muscle fibers through a TGR5-dependent mechanism.

10.
Physiol Rep ; 10(14): e15369, 2022 07.
Article in English | MEDLINE | ID: mdl-35883244

ABSTRACT

An interaction between mitochondrial dynamics, physical activity levels, and COVID-19 severity has been previously hypothesized. However, this has not been tested. We aimed to compare mitochondrial morphology and cristae density of PBMCs between subjects with non-severe COVID-19, subjects with severe COVID-19, and healthy controls. Additionally, we compared the level of moderate-vigorous physical activity (MVPA) and sitting time between groups. Blood samples were taken to obtain PBMCs. Mitochondrial dynamics were assessed by electron microscopy images and western blot of protein that regulate mitochondrial dynamics. The International Physical Activity Questionnaire (IPAQ; short version) was used to estimate the level of MVPA and the sitting time The patients who develop severe COVID-19 (COVID-19++) not present alterations of mitochondrial size neither mitochondrial density in comparison to non-severe patients COVID-19 (COVID-19) and control subjects (CTRL). However, compared to CTRL, COVID-19 and COVID-19++ groups have lower mitochondrial cristae length, a higher proportion of abnormal mitochondrial cristae. The COVID-19++ group has lower number (trend) and length of mitochondrial cristae in comparison to COVID-19 group. COVID-19, but not COVID-19++ group had lower Opa 1, Mfn 2 and SDHB (Complex II) proteins than CTRL group. Besides, COVID-19++ group has a higher time sitting. Our results show that low mitochondrial cristae density, potentially due to physical inactivity, is associated with COVID-19 severity.


Subject(s)
COVID-19 , Sitting Position , Humans , Mitochondria/metabolism , Mitochondrial Dynamics , Sedentary Behavior
11.
Eur J Transl Myol ; 31(1)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33709647

ABSTRACT

Sarcopenia is a highly prevalent complication of non-alcoholic fatty liver disease (NAFLD). We aimed to conduct a systematic review and meta-analyses to elucidate the exercise training (ET)'s efficacy on NAFLD adult patients' sarcopenia criteria. We identified relevant randomized controlled trials (RCT) in electronic databases PubMed, CINAHL, and Scopus. We selected seven RCT from 66 screened studies. The ET programs included endurance or combined (endurance and resistance) training. No study performed resistance training alone. The physical function improved with endurance or combined training (mean differences [MD] 8.26 mL/Kg*min [95% CI 5.27 to 11.24 mL/Kg*min], p < 0.0001); Muscle mass showed no evidence of the beneficial effects of endurance or combined training (MD 1.01 Kg [95% CI -1.78 to 3.80 Kg], p = 0.48). None of the selected studies evaluated muscle strength. Endurance and combined training increase physical function criteria but do not improve muscle mass criteria on sarcopenia in NAFLD patients. These results must be interpreted with caution for the small number of patients included in the RCTs analyzed, the different characteristics of the ET carried out, the non-use of resistance training, which prevents assess its effect on sarcopenia despite the evidence that recommends it and does not assessment muscle strength criteria in RCT include. Future research should include muscle strength assessments and resistance training to evaluate the effects in this condition. Exercise training is beneficial for sarcopenia in NAFLD but is necessary more experimental evidence to define the best type of training that positively affects the three criteria of sarcopenia. PROSPERO reference number CRD42020191471.

12.
Front Bioeng Biotechnol ; 8: 565679, 2020.
Article in English | MEDLINE | ID: mdl-33224929

ABSTRACT

Electrical pulse stimulation (EPS) has been suggested to be a useful method to investigate the mechanisms underlying the adaptations of human skeletal muscle to both endurance and resistance exercise. Although different myotube stimulation protocols mimicking acute and chronic endurance exercise have been developed, no convincing protocol mimicking resistance exercise exists. Adaptations to resistance exercise mainly ensue via the Akt/mTOR pathway. Therefore, the aim of this study was to develop a high frequency EPS protocol mimicking resistance exercise both acutely (100 Hz, 15 V, 0.4 ms with 4 s rest between each contraction for 30 min) and chronically (acute EPS protocol repeated on three consecutive days) on human myotubes. Compared to control conditions, the acute EPS protocol increased the phosphorylation of AktSer473 at 0 h (+91%, p = 0.02) and 3 h (+95%, p = 0.01), and mTORSer2448 at 0 h (+93%, p = 0.03), 1 h (+129%, p = 0.01), and 3 h (+104%, p = 0.0250) post-stimulation. The phosphorylation of ERK1/2Thr202/Tyr204 was increased at 0 h (+69%, p = 0.02) and 3 h (+117%, p = 0.003) post-stimulation compared to control conditions. In addition, both S6K1Thr389 (+157%, p = 0.009) and S6Ser240/244 (+153%, p = 0.003) phosphorylation increased 1 h after EPS compared to control conditions. Chronic EPS protocol increased the phosphorylation of S6K1Thr389 1 h (+105%, p = 0.03) and 3 h (+126%, p = 0.02) and the phosphorylation of S6Ser240/244 1 h (+32%, p = 0.02) after the end of the last stimulation. In conclusion, the present work shows that human muscle cells subjected to EPS can be used as an in vitro model of acute and chronic resistance exercise.

SELECTION OF CITATIONS
SEARCH DETAIL
...