Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Entomol Res ; : 1-14, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34130764

ABSTRACT

Plants not only respond to herbivorous damage but adjust their defense system after egg deposition by pest insects. Thereby, parasitoids use oviposition-induced plant volatiles to locate their hosts. We investigated the olfactory behavioral responses of Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) to volatile blends emitted by maize (Zea mays L.) with singular and stacked events after oviposition by Spodoptera frugiperda Smith, 1797 (Hymenoptera: Trichogrammatidae) moths. Additionally, we examined possible variations in gene expression and on oviposition-induced volatiles. We used a Y-tube olfactometer to test for the wasp responses to volatiles released by maize plants oviposited by S. frugiperda and not-oviposited plants. Using the real-time PCR technique (qRT-PCR), we analyzed the expression of lipoxygenase and three terpene synthases genes, which are enzymes involved in the synthesis of volatile compounds that attract parasitoids of S. frugiperda. Olfactometer tests showed that T. pretiosum is strongly attracted by volatiles from transgenic maize emitted by S. frugiperda oviposition (VTPRO 3, more than 75% individuals were attracted). The relative expression of genes TPS10, LOX e STC was higher in transgenic hybrids than in the conventional (isogenic line) hybrids. The GC-MS analysis revealed that some volatile compounds are released exclusively by transgenic maize. This study provides evidence that transgenic hybrids enhanced chemical cues under oviposition-induction and helped to increase T. pretiosum efficiency in S. frugiperda control. This finding shows that among the evaluated hybrids, genetically modified hybrids can improve the biological control programs, since they potentialize the egg parasitoid foraging, integrating pest management.

2.
Neotrop Entomol ; 49(2): 302-310, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31970681

ABSTRACT

Little is known about the effects of genetically modified corn plants on the foraging of Spodoptera frugiperda (J.E. Smith). Therefore, this study examines whether singular herbicide-tolerant and insect-resistant plants and their stacked events interfere with food preference and oviposition of S. frugiperda. Two non-Bt corn hybrids and three Bt-hybrids, some of them with glyphosate tolerance (GT), were evaluated. Food preference of larvae and biological parameters were assessed. Oviposition preference bioassays involved choice and no choice condition in plants uninfested and previously infested by larvae in a greenhouse and in the field. The results indicate that there is no relationship between preference of larvae and adult moths. Adult females selected preferentially transgenic hybrids, while larvae selected non-Bt hybrid. Fall armyworm larvae avoid Bt-toxin-expressing leaf tissues, survived only on the non-Bt leaf tissues, and showed minor differences in other life-history traits reared on GT and non-transgenic corn leaf tissues. Female moths showed preference for transgenic plants to lay eggs, but with variable output between previously infested and uninfested plants with larvae. The fact that moths preferred Ag 3700RR2 and non-Bt hybrids for oviposition supports the refuge's strategy aiming at producing susceptible individuals. The use of this hybrid must be integrated with a program of control. The results showed also the importance of correct hybrid selection as part of insect resistance management to Bt-plants. The implications of these findings for understanding the impacts of plant-mediated cues on pest behavior in transgenic crop systems are discussed.


Subject(s)
Choice Behavior , Feeding Behavior , Oviposition , Spodoptera/physiology , Zea mays/genetics , Animals , Bacillus thuringiensis Toxins/genetics , Behavior, Animal , Female , Plants, Genetically Modified/genetics
3.
Neotrop Entomol ; 42(2): 191-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23949754

ABSTRACT

Cannibalism in the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) (FAW), is a limiting factor in a baculovirus production system. To detect the impact of cannibalism, a two-step bioassay was conducted with different larval ages of FAW fed on two food sources (corn and castor bean leaves) contaminated with the S. frugiperda multiple-embedded nucleopolyhedrovirus. In a first bioassay, the food source affected the cannibalism, being higher for all larval ages tested (5-, 6- and 7-day-old larvae) in larvae fed on corn than on those fed on castor bean leaves. Larval mortality, weight equivalent and larval equivalents (LEs) per hectare decreased as the larval age increased. Larval weight, occlusion bodies (OBs)/larva and total OBs increased when the larval age increased. In a second bioassay, in which only 6- and 7-day-old larvae were used because of the performance in the first bioassay, the cannibalism rates were affected by the interaction between food sources and time of feeding (48 and 72 h), reaching the highest values for 6- and 7-day-old larvae fed on corn leaves for 72 h. Mortality of the FAW was affected by the interaction between food sources, larval age and time of feeding. The lowest mortalities were on 7-day-old larvae when they were fed on castor bean leaves for 48 and 72 h. Larval weight, OBs/larva, total OBs and LEs were affected by the interaction between food sources and larval age. A significant correlation was observed between larval weight and OBs/larva that fed on both food sources, suggesting that larval weight can be used to achieve a concentration to be sprayed in 1 ha.


Subject(s)
Baculoviridae , Cannibalism , Lepidoptera/physiology , Lepidoptera/virology , Animals , Food , Larva/virology , Plant Leaves
4.
Plant Cell Rep ; 17(1): 73-76, 1997 Nov.
Article in English | MEDLINE | ID: mdl-30732424

ABSTRACT

A total of 113 maize inbreds adapted to tropical conditions were evaluated for their tissue culture response. Additionally, four media combinations of 15 or 30 µM dicamba with or without 88 µM AgNO3 were used to study the effect of dicamba and AgNO3 on type II callus production and plant regeneration from 42 of the inbred lines. Inbreds 48, 389 and 1345 of the populations BR 105, BR 112, and Catete, respectively, showed a high capacity for type II callus production and plant regeneration. The production of type II calli increased significantly when the concentration of dicamba was changed from 15 to 30 µM and when AgNO3 was added to the medium. A synergistic effect between 88 µM AgNO3 and 30 µM dicamba (CM-30Ag medium) was observed, leading to additional production of type II callus. Medium CM-30Ag allowed the best tissue culture performance and plant regeneration capacity.

SELECTION OF CITATIONS
SEARCH DETAIL
...