Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35458755

ABSTRACT

Tuberculosis remains a global health problem that affects millions of people around the world. Despite recent efforts in drug development, new alternatives are required. Herein, a series of 27 N-(4-(benzyloxy)benzyl)-4-aminoquinolines were synthesized and evaluated for their ability to inhibit the M. tuberculosis H37Rv strain. Two of these compounds exhibited minimal inhibitory concentrations (MICs) similar to the first-line drug isoniazid. In addition, these hit compounds were selective for the bacillus with no significant change in viability of Vero and HepG2 cells. Finally, chemical stability, permeability and metabolic stability were also evaluated. The obtained data show that the molecular hits can be optimized aiming at the development of drug candidates for tuberculosis treatment.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Aminoquinolines/pharmacology , Antitubercular Agents/chemistry , Humans , Isoniazid/pharmacology , Microbial Sensitivity Tests , Tuberculosis/drug therapy
2.
Molecules ; 26(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34500579

ABSTRACT

Tuberculosis has been described as a global health crisis since the 1990s, with an estimated 1.4 million deaths in the last year. Herein, a series of 20 1H-indoles were synthesized and evaluated as in vitro inhibitors of Mycobacterium tuberculosis (Mtb) growth. Furthermore, the top hit compounds were active against multidrug-resistant strains, without cross-resistance with first-line drugs. Exposing HepG2 and Vero cells to the molecules for 72 h showed that one of the evaluated structures was devoid of apparent toxicity. In addition, this 3-phenyl-1H-indole showed no genotoxicity signals. Finally, time-kill and pharmacodynamic model analyses demonstrated that this compound has bactericidal activity at concentrations close to the Minimum Inhibitory Concentration, coupled with a strong time-dependent behavior. To the best of our knowledge, this study describes the activity of 3-phenyl-1H-indole against Mtb for the first time.


Subject(s)
Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Animals , Cell Line, Tumor , Chlorocebus aethiops , Hep G2 Cells , Humans , Microbial Sensitivity Tests/methods , Structure-Activity Relationship , Vero Cells
3.
J Med Chem ; 62(3): 1231-1245, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30615449

ABSTRACT

Overexpressed human thymidine phosphorylase (hTP) has been associated with cancer aggressiveness and poor prognosis by triggering proangiogenic and antiapoptotic signaling. Designed as transition-state analogues by mimicking the oxacarbenium ion, novel pyrimidine-2,4-diones were synthesized and evaluated as inhibitors of hTP activity. The most potent compound (8g) inhibited hTP in the submicromolar range with a noncompetitive inhibition mode with both thymidine and inorganic phosphate substrates. Furthermore, compound 8g was devoid of apparent toxicity to a panel of mammalian cells, showed no genotoxicity signals, and had low probability of drug-drug interactions and moderate in vitro metabolic rates. Finally, treatment with 8g (50 mg/(kg day)) for 2 weeks (5 days/week) significantly reduced tumor growth using an in vivo glioblastoma model. To the best of our knowledge, this active compound is the most potent in vitro hTP inhibitor with a kinetic profile that cannot be reversed by the accumulation of any enzyme substrates.


Subject(s)
Brain Neoplasms/drug therapy , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glioblastoma/drug therapy , Thymidine Phosphorylase/antagonists & inhibitors , Animals , Area Under Curve , Cell Line , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Half-Life , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...