Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 155(22): 221102, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34911314

ABSTRACT

A new theory for the electrostatic component of the chemical potential for homogeneous electrolytes modeled with the primitive model is developed. This Mean Countershell Approximation (MCSA) is an analytic theory derived by including the interactions between the ions' screening clouds. At molar concentrations, these contribute substantially to the excess chemical potential but are absent in classical Debye-Hückel and Mean Spherical Approximation (MSA) theories. Simulations show that the MCSA is highly accurate, including at the low dielectric constants of ionic liquids. While sharing a mathematical framework with the MSA, the MCSA has simpler formulas and is qualitatively more accurate when there is ion size asymmetry.

2.
J Chem Phys ; 154(15): 154704, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33887923

ABSTRACT

Scaling of the behavior of a nanodevice means that the device function (selectivity) is a unique smooth and monotonic function of a scaling parameter that is an appropriate combination of the system's parameters. For the uniformly charged cylindrical nanopore studied here, these parameters are the electrolyte concentration, c, voltage, U, the radius and the length of the nanopore, R and H, and the surface charge density on the nanopore's surface, σ. Due to the non-linear dependence of selectivities on these parameters, scaling can only be applied in certain limits. We show that the Dukhin number, Du=|σ|/eRc∼|σ|λD 2/eR (λD is the Debye length), is an appropriate scaling parameter in the nanotube limit (H → ∞). Decreasing the length of the nanopore, namely, approaching the nanohole limit (H → 0), an alternative scaling parameter has been obtained, which contains the pore length and is called the modified Dukhin number: mDu ∼ Du H/λD ∼ |σ|λDH/eR. We found that the reason for non-linearity is that the double layers accumulating at the pore wall in the radial dimension correlate with the double layers accumulating at the entrances of the pore near the membrane on the two sides. Our modeling study using the Local Equilibrium Monte Carlo method and the Poisson-Nernst-Planck theory provides concentration, flux, and selectivity profiles that show whether the surface or the volume conduction dominates in a given region of the nanopore for a given combination of the variables. We propose that the inflection point of the scaling curve may be used to characterize the transition point between the surface and volume conductions.

3.
Entropy (Basel) ; 22(11)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33287027

ABSTRACT

Biological ion channels and synthetic nanopores are responsible for passive transport of ions through a membrane between two compartments. Modeling these ionic currents is especially amenable to reduced models because the device functions of these pores, the relation of input parameters (e.g., applied voltage, bath concentrations) and output parameters (e.g., current, rectification, selectivity), are well defined. Reduced models focus on the physics that produces the device functions (i.e., the physics of how inputs become outputs) rather than the atomic/molecular-scale physics inside the pore. Here, we propose four rules of thumb for constructing good reduced models of ion channels and nanopores. They are about (1) the importance of the axial concentration profiles, (2) the importance of the pore charges, (3) choosing the right explicit degrees of freedom, and (4) creating the proper response functions. We provide examples for how each rule of thumb helps in creating a reduced model of device behavior.

4.
Phys Chem Chem Phys ; 22(34): 19033-19045, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32812580

ABSTRACT

Bipolar nanopores have powerful rectification properties due to the asymmetry in the charge pattern on the wall of the nanopore. In particular, bipolar nanopores have positive and negative surface charges along the pore axis. Rectification is strong if the radius of the nanopore is small compared to the screening length of the electrolyte so that both cations and anions have depletion zones in the respective regions. The depths of these depletion zones is sensitive to sign of the external voltage. In this work, we are interested in the effect of the presence of strong ionic correlations (both between ions and between ions and surface charge) due to the presence of multivalent ions and large surface charges. We show that strong ionic correlations cause leakage of the coions, a phenomenon that is absent in mean field theories. In this modeling study, we use both the mean-field Poisson-Nernst-Planck (PNP) theory and a particle simulation method, Local Equilibrium Monte Carlo (LEMC), to show that phenomena such as overcharging and charge inversion cannot be reproduced with PNP, while LEMC is able to produce nonmonotonic dependence of currents and rectification as a function of surface charge strength.

5.
Phys Chem Chem Phys ; 21(36): 19772-19784, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31475284

ABSTRACT

We model and simulate a nanopore sensor that selectively binds analyte ions. This binding leads to the modulation of the local concentrations of the ions of the background electrolyte (KCl), and, thus, to the modulation of the ionic current flowing through the pore. The nanopore's wall has a bipolar charge pattern with a larger positive buffer region determining the anions as the main charge carriers and a smaller negative binding region containing binding sites. This charge pattern proved to be an appropriate one as shown by a previous comparative study of varying charge patterns (Mádai et al. J. Mol. Liq., 2019, 283, 391-398.). Binding of the positive analyte ions attracts more anions in the pore thus increasing the current. The asymmetric nature of the pore results in an additional device function, rectification. Our model, therefore, is a dual response device. Using a reduced model of the nanopore studied by a hybrid computer simulation method (Local Equilibrium Monte Carlo coupled with the Nernst-Planck equation) we show that we can create a sensor whose underlying mechanisms are based on the changes in the local electric field as a response to changing thermodynamic conditions. The change in the electric field results in changes in the local ionic concentrations (depletion zones), and, thus, changes in ionic currents.

6.
J Chem Phys ; 150(14): 144703, 2019 04 14.
Article in English | MEDLINE | ID: mdl-30981242

ABSTRACT

We report a multiscale modeling study for charged cylindrical nanopores using three modeling levels that include (1) an all-atom explicit-water model studied with molecular dynamics, and reduced models with implicit water containing (2) hard-sphere ions studied with the Local Equilibrium Monte Carlo simulation method (computing ionic correlations accurately), and (3) point ions studied with Poisson-Nernst-Planck theory (mean-field approximation). We show that reduced models are able to reproduce device functions (rectification and selectivity) for a wide variety of charge patterns, that is, reduced models are useful in understanding the mesoscale physics of the device (i.e., how the current is produced). We also analyze the relationship of the reduced implicit-water models with the explicit-water model and show that diffusion coefficients in the reduced models can be used as adjustable parameters with which the results of the explicit- and implicit-water models can be related. We find that the values of the diffusion coefficients are sensitive to the net charge of the pore but are relatively transferable to different voltages and charge patterns with the same total charge.

7.
Phys Chem Chem Phys ; 20(37): 24156-24167, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30206599

ABSTRACT

We present a modeling study of a nanopore-based transistor computed by a mean-field continuum theory (Poisson-Nernst-Planck, PNP) and a hybrid method including particle simulation (Local Equilibrium Monte Carlo, LEMC) that is able to take ionic correlations into account including the finite size of ions. The model is composed of three regions along the pore axis with the left and right regions determining the ionic species that is the main charge carrier, and the central region tuning the concentration of that species and, thus, the current flowing through the nanopore. We consider a model of small dimensions with the pore radius comparable to the Debye-screening length (Rpore/λD≈ 1), which, together with large surface charges provides a mechanism for creating depletion zones and, thus, controlling ionic current through the device. We report the scaling behavior of the device as a function of the Rpore/λD parameter. Qualitative agreement between PNP and LEMC results indicates that mean-field electrostatic effects predominantly determine device behavior.

8.
Phys Rev E ; 98(1-1): 012116, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110825

ABSTRACT

Classical density functional theory (DFT) is a useful tool to compute the structure of the electrical double layer because it includes ion-ion correlations due to excluded-volume effects (i.e., steric correlations) and ion screening effects (i.e., electrostatic correlations beyond the electrostatic mean-field potential). This paper systematically analyzes the accuracies of three different electrostatic excess free-energy functionals, as compared to Monte Carlo (MC) simulations of the planar electrical double layer, over a large parameter space. Specifically, we tested the reference fluid density (RFD) [Gillespie et al., J. Phys.: Condens. Matter 14, 12129 (2002)10.1088/0953-8984/14/46/317], functionalized mean spherical approximation (fMSA) [Roth and Gillespie, J. Phys.: Condens. Matter 28, 244006 (2016)10.1088/0953-8984/28/24/244006], and bulk fluid (BF) [Kierlik and Rosinberg, Phys. Rev. A 44, 5025 (1991)10.1103/PhysRevA.44.5025; Y. Rosenfeld, J. Chem. Phys. 98, 8126 (1993)10.1063/1.464569] functionals. Previous work compared these DFT methods to MC simulations only for a small set of parameters. Here, a total of twelve different cations were studied, with valences of +1, +2, and +3 and ion diameters of 0.15, 0.30, 0.60, and 0.90 nm at bulk concentrations between 1 µM and 1 M. The anion always had valence -1 and diameter 0.30 nm. The structure of the double layer of these charged, hard-sphere ions was computed for surface charges ranging from 0 to -0.50C/m^{2}. All the DFTs were compared against each other for all the parameters, as well as to 378 MC simulations. Overall, RFD was the best of the three functionals, while BF was the least accurate. fMSA performed significantly better than BF, making it a reasonable choice that is less computationally expensive than RFD. For monovalent cations, all three functionals worked reasonably well, except BF was qualitatively different from MC at very low surface charges. For multivalent cations, BF underestimated charge inversion while fMSA overestimated it. All DFTs performed poorly for small multivalent ions.

9.
Phys Chem Chem Phys ; 19(27): 17816-17826, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28657634

ABSTRACT

In a multiscale modeling approach, we present computer simulation results for a rectifying bipolar nanopore at two modeling levels. In an all-atom model, we use explicit water to simulate ion transport directly with the molecular dynamics technique. In a reduced model, we use implicit water and apply the Local Equilibrium Monte Carlo method together with the Nernst-Planck transport equation. This hybrid method makes the fast calculation of ion transport possible at the price of lost details. We show that the implicit-water model is an appropriate representation of the explicit-water model when we look at the system at the device (i.e., input vs. output) level. The two models produce qualitatively similar behavior of the electrical current for different voltages and model parameters. Looking at the details of concentration and potential profiles, we find profound differences between the two models. These differences, however, do not influence the basic behavior of the model as a device because they do not influence the z-dependence of the concentration profiles which are the main determinants of current. These results then address an old paradox: how do reduced models, whose assumptions should break down in a nanoscale device, predict experimental data? Our simulations show that reduced models can still capture the overall device physics correctly, even though they get some important aspects of the molecular-scale physics quite wrong; reduced models work because they include the physics that is necessary from the point of view of device function. Therefore, reduced models can suffice for general device understanding and device design, but more detailed models might be needed for molecular level understanding.

10.
J Chem Phys ; 146(12): 124125, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28388126

ABSTRACT

In the framework of a multiscale modeling approach, we present a systematic study of a bipolar rectifying nanopore using a continuum and a particle simulation method. The common ground in the two methods is the application of the Nernst-Planck (NP) equation to compute ion transport in the framework of the implicit-water electrolytemodel. The difference is that the Poisson-Boltzmann theory is used in the Poisson-Nernst-Planck (PNP) approach, while the Local Equilibrium Monte Carlo (LEMC) method is used in the particle simulation approach (NP+LEMC) to relate the concentration profile to the electrochemical potential profile. Since we consider a bipolar pore which is short and narrow, we perform simulations using two-dimensional PNP. In addition, results of a non-linear version of PNP that takes crowding of ions into account are shown. We observe that the mean field approximation applied in PNP is appropriate to reproduce the basic behavior of the bipolar nanopore (e.g., rectification) for varying parameters of the system (voltage, surface charge,electrolyte concentration, and pore radius). We present current data that characterize the nanopore's behavior as a device, as well as concentration, electrical potential, and electrochemical potential profiles.

11.
J Chem Phys ; 147(24): 244702, 2017 Dec 28.
Article in English | MEDLINE | ID: mdl-29289138

ABSTRACT

We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

13.
J Phys Chem B ; 119(4): 1546-57, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25549274

ABSTRACT

We investigate the individual activity coefficients of pure 1:1 and 2:1 electrolytes using our theory that is based on the competition of ion-ion (II) and ion-water (IW) interactions (Vincze et al. J. Chem. Phys. 2010, 133, 154507). The II term is computed from grand canonical Monte Carlo simulations on the basis of the implicit solvent model of electrolytes using hard sphere ions with Pauling radii. The IW term is computed on the basis of Born's treatment of solvation using experimental hydration free energies. The two terms are coupled through the concentration-dependent dielectric constant of the electrolyte. We show that the theory can provide valuable insight into the nonmonotonic concentration dependence of individual activity coefficients. We compare our theoretical predictions against experimental data measured by electrochemical cells containing ion-specific electrodes. We find good agreement for 2:1 electrolytes, while the accuracy is worse for 1:1 systems. This deviation in accuracy is explained by the fact that the two competing terms (II and IW) are much larger in the 2:1 case, resulting in smaller relative errors. The difference of the excess chemical potentials of cations and anions is determined by asymmetries in the properties of the two ions: charge, radius, and hydration free energies.

14.
J Chem Phys ; 140(23): 234508, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24952553

ABSTRACT

Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, "The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations," J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of "solvated ionic radius" assumed by earlier studies.

15.
J Chem Phys ; 133(15): 154507, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20969403

ABSTRACT

We propose a simple model to explain the nonmonotonic concentration dependence of the mean activity coefficient of simple electrolytes without using any adjustable parameters. The primitive model of electrolytes is used to describe the interaction between ions computed by the adaptive grand canonical Monte Carlo method. For the dielectric constant of the electrolyte, we use experimental concentration dependent values. This is included through a solvation term in our treatment to describe the interaction between ions and water that changes as the dielectric constant changes with concentration. This term is computed by a Born-treatment fitted to experimental hydration energies. Our results for LiCl, NaCl, KCl, CsCl, NaBr, NaI, MgCl(2), CaCl(2), SrCl(2), and BaCl(2) demonstrate that the principal reason of the nonmonotonic behavior of the activity coefficient is a balance between the solvation and ion-ion correlation terms. This conclusion differs from previous studies that assumed that it is the balance of hard sphere repulsion and electrostatic attraction that produces the nonmonotonic behavior. Our results indicate that the earlier assumption that solvation can be taken into account by a larger, "solvated" ionic radius should be reconsidered. To explain second order effects (such as dependence on ionic size), we conclude that explicit water models are needed.

16.
Biochim Biophys Acta ; 1798(11): 2013-21, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20696128

ABSTRACT

Current through L-type calcium channels (Ca(V)1.2 or dihydropyridine receptor) can be blocked by micromolar concentrations of trivalent cations like the lanthanide gadolinium (Gd(3+)). It has been proposed that trivalent block is due to ions competing for a binding site in both the open and closed configuration, but possibly with different trivalent affinities. Here, we corroborate this general view of trivalent block by computing conductance of a model L-type calcium channel. The model qualitatively reproduces the Gd(3+) concentration dependence and the effect that substantially more Gd(3+) is required to produce similar block in the presence of Sr(2+) (compared to Ba(2+)) and even more in the presence of Ca(2+). Trivalent block is explained in this model by cations binding in the selectivity filter with the charge/space competition mechanism. This is the same mechanism that in the model channel governs other selectivity properties. Specifically, selectivity is determined by the combination of ions that most effectively screen the negative glutamates of the protein while finding space in the midst of the closely packed carboxylate groups of the glutamate residues.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Gadolinium/pharmacology , Barium/chemistry , Calcium/chemistry , Gadolinium/chemistry
17.
J Chem Phys ; 131(16): 164120, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19894940

ABSTRACT

We examine the dielectric constant of nonpolar fluids by direct Monte Carlo simulations on the basis of the polarizable hard sphere (PHS) model, where the spheres carry molecular polarizabilities. Point dipoles are induced in the spheres partly by an external electric field and partly by other molecules. It has been known that the Clausius-Mosotti equation needs a correction due to mutual polarization between molecules. We reproduce the qualitative behavior found in experiments: the correction increases with increasing density, reaches a maximum, and decreases at high densities. We show that the classic theory of Kirkwood and Yvon is quantitatively correct for the PHS model.

18.
J Gen Physiol ; 133(5): 497-509, 2009 May.
Article in English | MEDLINE | ID: mdl-19398776

ABSTRACT

A physical model of selective "ion binding" in the L-type calcium channel is constructed, and consequences of the model are compared with experimental data. This reduced model treats only ions and the carboxylate oxygens of the EEEE locus explicitly and restricts interactions to hard-core repulsion and ion-ion and ion-dielectric electrostatic forces. The structural atoms provide a flexible environment for passing cations, thus resulting in a self-organized induced-fit model of the selectivity filter. Experimental conditions involving binary mixtures of alkali and/or alkaline earth metal ions are computed using equilibrium Monte Carlo simulations in the grand canonical ensemble. The model pore rejects alkali metal ions in the presence of biological concentrations of Ca(2+) and predicts the blockade of alkali metal ion currents by micromolar Ca(2+). Conductance patterns observed in varied mixtures containing Na(+) and Li(+), or Ba(2+) and Ca(2+), are predicted. Ca(2+) is substantially more potent in blocking Na(+) current than Ba(2+). In apparent contrast to experiments using buffered Ca(2+) solutions, the predicted potency of Ca(2+) in blocking alkali metal ion currents depends on the species and concentration of the alkali metal ion, as is expected if these ions compete with Ca(2+) for the pore. These experiments depend on the problematic estimation of Ca(2+) activity in solutions buffered for Ca(2+) and pH in a varying background of bulk salt. Simulations of Ca(2+) distribution with the model pore bathed in solutions containing a varied amount of Li(+) reveal a "barrier and well" pattern. The entry/exit barrier for Ca(2+) is strongly modulated by the Li(+) concentration of the bath, suggesting a physical explanation for observed kinetic phenomena. Our simulations show that the selectivity of L-type calcium channels can arise from an interplay of electrostatic and hard-core repulsion forces among ions and a few crucial channel atoms. The reduced system selects for the cation that delivers the largest charge in the smallest ion volume.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Ion Channel Gating , Static Electricity , Animals , Barium/metabolism , Binding Sites , Binding, Competitive , Buffers , Cell Membrane Permeability , Computer Simulation , Humans , Hydrogen-Ion Concentration , Kinetics , Lithium/metabolism , Models, Biological , Monte Carlo Method , Sodium/metabolism
19.
Biophys J ; 96(4): 1293-306, 2009 Feb 18.
Article in English | MEDLINE | ID: mdl-19217848

ABSTRACT

Proteins can be influenced strongly by the electrolyte in which they are dissolved, and we wish to model, understand, and ultimately control such ionic effects. Relatively detailed Monte Carlo (MC) ion simulations are needed to capture biologically important properties of ion channels, but a simpler treatment of ions, the linearized Poisson-Boltzmann (LPB) theory, is often used to model processes such as binding and folding, even in settings where the LPB theory is expected to be inaccurate. This study uses MC simulations to assess the reliability of the LPB theory for such a system, the constrained, anionic active site of HIV protease. We study the distributions of ions in and around the active site, as well as the energetics of displacing ions when a protease inhibitor is inserted into the active site. The LPB theory substantially underestimates the density of counterions in the active site when divalent cations are present. It also underestimates the energy cost of displacing these counterions, but the error is not consequential because the energy cost is less than kBT, according to the MC calculations. Thus, the LPB approach will often be suitable for studying energetics, but the more detailed MC approach is critical when ionic distributions and fluxes are at issue.


Subject(s)
Catalytic Domain , HIV Protease Inhibitors/chemistry , HIV Protease/chemistry , Ions/chemistry , Oligopeptides/chemistry , Algorithms , Binding Sites , Computer Simulation , HIV Protease/metabolism , Models, Chemical , Models, Molecular , Monte Carlo Method , Protein Binding
20.
Biophys J ; 93(6): 1960-80, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17526571

ABSTRACT

Monte Carlo simulations of equilibrium selectivity of Na channels with a DEKA locus are performed over a range of radius R and protein dielectric coefficient epsilon(p). Selectivity arises from the balance of electrostatic forces and steric repulsion by excluded volume of ions and side chains of the channel protein in the highly concentrated and charged (approximately 30 M) selectivity filter resembling an ionic liquid. Ions and structural side chains are described as mobile charged hard spheres that assume positions of minimal free energy. Water is a dielectric continuum. Size selectivity (ratio of Na+ occupancy to K+ occupancy) and charge selectivity (Na+ to Ca2+) are computed in concentrations as low as 10(-5) M Ca2+. In general, small R reduces ion occupancy and favors Na+ over K+ because of steric repulsion. Small epsilon(p) increases occupancy and favors Na+ over Ca2+ because protein polarization amplifies the pore's net charge. Size selectivity depends on R and is independent of epsilon(p); charge selectivity depends on both R and epsilon(p). Thus, small R and epsilon(p) make an efficient Na channel that excludes K+ and Ca2+ while maximizing Na+ occupancy. Selectivity properties depend on interactions that cannot be described by qualitative or verbal models or by quantitative models with a fixed free energy landscape.


Subject(s)
Models, Biological , Models, Molecular , Sodium Channels/chemistry , Sodium Channels/metabolism , Binding Sites , Biophysical Phenomena , Biophysics , Calcium/metabolism , Computer Simulation , Monte Carlo Method , Porins/chemistry , Porins/metabolism , Potassium/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Sodium/metabolism , Static Electricity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...