Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080008

ABSTRACT

Nanoformulation has been considered one of the newly applied methods in integrated pest management strategies. In this research, a conventional neonicotinoid insecticide acetamiprid was nanoencapsulated via AL (Sodium Alginate) and PEG (Polyethylene Glycol) and tested against the elm leaf beetle Xanthogaleruca luteola. The synthesized particles had spherical-like morphology and nanoscale based on TEM (Transmission Electron Microscopy) and DLS (Dynamic Light Scattering). The encapsulation efficiency and loading percentages of acetamiprid in AL and PEG were 92.58% and 90.15%, and 88.46% and 86.79%, respectively. Leaf discs treated with different formulations by the leaf-dipping method were used for oral toxicity assays. The LC50 values (Lethal Concentration to kill 50% of insect population) of acetamiprid and Al- and PEG-nanoencapsulated formulations on third-instar larvae were 0.68, 0.04, and 0.08 ppm, respectively. Based on the highest relative potency, AL-encapsulated acetamiprid had the most toxicity. The content of energy reserve protein, glucose, and triglyceride and the activity of detoxifying enzymes esterase and glutathione S-transferase of the larvae treated by LC50 values of nanoformulations were also decreased. According to the current findings, the nanoencapsulation of acetamiprid by Al and PEG can increase its insecticidal performance in terms of lethal and sublethal toxicity.

2.
In Vitro Cell Dev Biol Anim ; 58(1): 14-20, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35075604

ABSTRACT

Extensive usage of synthetic chemical pesticides has collateral effects in harming human and animal health and the environment and promoting the development of resistance in pests. The potential of plant compounds as bio insecticides has been described as a promising field of agricultural development. The present study involved the use of Artemisia annua essential oils to evaluate their cytotoxic activities against an established cell line of lesser mulberry pyralid. Five types of hemocytes were recognized (prohaemocytes, plasmatocytes, granulocytes, oenocytoids, and spherulocytes) in the primary cultures maintained in Ex-Cell media with 10% fetal bovine serum (FBS). Artemisia annua essential oils produced noticeable cytotoxicity against the insect cell lines. Applied at a concentration 500 ppm, oils extracted from the vegetative or flowering stages of A. annua produced 71% and 80% cell death, respectively. Nanoemulsions of EOs from the vegetative or flowering stages of A. annua killed 67 and 60% of the cells, respectively. This study has clearly shown significant bioactivities of A. annua secondary metabolites to insect cell lines.


Subject(s)
Artemisia annua , Asteraceae , Moths , Oils, Volatile , Animals , Artemisia annua/chemistry , Cell Line , Hemocytes , Oils, Volatile/chemistry , Oils, Volatile/pharmacology
3.
J Econ Entomol ; 113(5): 2086-2095, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32719845

ABSTRACT

Helicoverpa armigera Nucleopolyhedrovirus (HearNPV) (genus: Alphabaculovirus, incertae sedis: Baculoviridae) has been used to control Helicoverpa armigera (Hübner). A reproducible and susceptible cell line was prepared from the hemocytes of Ephestia kuehniella in Grace and Ex-Cell 420 media. The population doubling time of these cloned cell cultures during the logarithmic phase were about 2.3 and 3.7 d for Ex-Cell 420 and Grace's media, respectively. When 60% confluence occurred, cells were infected by viral inoculums. All biochemical compounds were significantly changed relevant to cellular metabolism due to HearNPV infection. In order to improve its stability, two polymer formulations were used, i.e., formulation A (sodium alginate, gelatin, starch, and molasses) and formulation B (cottonseed kernel extract, Bran, glycerol, boric acid, egg white, and sugar). Formulant A provided high photostability by exhibiting 83.2 ± 3% efficacy and 88.66 ± 2.1% original activities remaining after 72 h UV exposure. Percentage original activity remaining of unformulated HearNPV and formulated mixture of B was 38.66 ± 2.6% and 9.33 ± 1.3%, respectively, after 72 h UV-irradiation. The virulence of the HearNPV proliferated from the Ex-Cell medium was similar to the virulence of wild-type HearNPV with LC50 of 7.7×105 OBs/ml. Formulant A, revealed only 20.0 ± 1% reduction in efficacy while the unformulated virus and formulant B faced a reduction of 90.0 ± 3% and 64.0 ± 2% after 72 h of UVA irradiation. Formulant A thus showed a high potential to protect HearNPVs microparticles against UV-inactivation suggesting a new platform for more efficient biological-management of cotton bollworm (specific name Helicoverpa armigera, genus: Helicoverpa, Lepidoptera: Noctuidae) in vivo.


Subject(s)
Insecticides , Lepidoptera , Moths , Nucleopolyhedroviruses , Animals , Cell Line , Hemocytes , Larva
SELECTION OF CITATIONS
SEARCH DETAIL
...