Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Gene Rep ; 26: 101509, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35071823

ABSTRACT

OBJECTIVE: Vitamin D is believed to affect the functionality of the immune system for the prevention of coronavirus disease. To investigate the role of this vitamin against the Coronavirus, this study analyzed the serum levels of vitamin D, the transcription pattern of inflammatory cytokines, and the frequency of total lymphocytes, TCD4+, TCD8+, and NK cells in 50 COVID-19-affected subjects in comparison to 50 healthy participants. MATERIALS AND METHODS: This study diagnosed and evaluated 100 patients. Frequency of lymphocytes was determined using flow cytometry. Cytokine expression levels were measured using Real-Time PCR. Serum levels of vitamin D and cytokines levels in cultured cell supernatant were measured by ELISA. RESULTS: Patients with COVID-19 exhibited decreased serum levels of vitamin D versus the healthy participants (p = 0.0024). The total number of lymphocytes, TCD4+, TCD8+, and NK cells was significantly reduced in patients with COVID-19 (p < 0.0001). Considerable upregulation of IL-12, IFN-γ, and TNF-α was seen in COVID-19 patients compared to the control group, whereas IFN-α was downregulated in COVID-19 patients. ELISA results also had increased levels of IL-12, TNF-α, and IFN-γ (p = 0.0014, 0.0012, and p < 0.0001, respectively), and decreased level of IFN-α (p = 0.0021) in patients with COVID-19 compared to the control group. CONCLUSION: These findings suggest a probable association among vitamin D concentrations, immune system function, and risk of COVID-19 infection. As a result, it is recommended that vitamin D be considered as a candidate for handling and controlling COVID-19 because of its ability to target the cytokine storm and its antiviral effects.

2.
Mol Biol Res Commun ; 11(4): 173-181, 2022.
Article in English | MEDLINE | ID: mdl-36777002

ABSTRACT

Papillary thyroid carcinoma (PTC) is the most common endocrine cancer. However, the role of biomechanics in the development and progression of PTC is obscure. The microarray dataset GSE104005 was examined to identify important microRNAs (miRNAs or miRs) and their probable roles in the carcinogenesis of PTC. The gene expression omnibus (GEO) database was used to obtain the data. R was used to access the differentially expressed miRNAs (DEMs) and genes (DEGs). The multiMiR software was used to predict DEM targets. To validate the top DEMs and DEGs, thirty tissue samples were obtained from PTC patients who had their thyroids removed and compared with 30 normal samples. The total RNA content of the tumor and corresponding non-tumoral adjacent samples were purified and converted to cDNA. Expression levels of top dysregulated miRNAs and their target and predicted DEG were evaluated using the RT-qPCR method. miR-182 and miR-183 were top upregulated miRs and miR-30d was the most downregulated miR among DEMs. Furthermore, FOXO1 which was shown to be targeted by aforementioned miRNAs, was the most downregulated genes among other DEGs. 10 hub nodes were detected by PPI construction. PTEN was the hub node with highest score. The in vitro gene expression analysis was also showed the same expression pattern in tissues. Significant increase in miR-182-5p and miR-183-5p expressions, as well as a significant decrease in FOXO1 and miR-30d-5p expressions, suggest that PTC cells may tend to preserve their autophagy capability.

3.
Mol Biol Res Commun ; 11(3): 133-141, 2022.
Article in English | MEDLINE | ID: mdl-36718241

ABSTRACT

Papillary thyroid carcinoma (PTC) accounts for approximately 80% of all human thyroid malignancies. Recently, there has been a dramatic rise in the prevalence of thyroid cancer all over the globe. Through analysis of the GEO database, GSE104005, the authors of the current research were able to determine the differential expression of microRNAs (DEMs) as well as their target genes. Real-time PCR was used on a total of 40 samples, 40 of which were from PTC samples and 40 from normal tissues, in order to validate the discovered DEMs and the genes. Gene Ontology (GO) categories were identified, and KEGG was used to conduct pathway enrichment analysis. The multiMiR R package was used to predict target genes of DEMs. Mir-142 was found to be overexpressed in PTC samples, as compared to normal tissues, and this was validated by the identification and validation. In addition, metal ion binding and the cellular response to metal ions were identified as essential pathways in the carcinogenesis of PTC. This demonstrates their significance in the development of this malignancy. The results of our research will serve as the foundation for further research in the area of miRNA-based cancer treatment.

4.
Int Immunopharmacol ; 89(Pt B): 107088, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33129099

ABSTRACT

BACKGROUND: As an ongoing worldwide health issue, Coronavirus disease 2019 (COVID-19) has been causing serious complications, including pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. However, there is no decisive treatment approach available for this disorder, which is primarily attributed to the large amount of inflammatory cytokine production. We aimed to identify the effects of Nano-curcumin on the modulation of inflammatory cytokines in COVID-19 patients. METHOD: Forty COVID-19 patients and 40 healthy controls were recruited and evaluated for inflammatory cytokine expression and secretion. Subsequently, COVID-19 patients were divided into two groups: 20 patients receiving Nano-curcumin and 20 patients as the placebo group. The mRNA expression and cytokine secretion levels of IL-1ß, IL-6, TNF-α and IL-18 were assessed by Real-time PCR and ELISA, respectively. RESULT: Our primary results indicated that the mRNA expression and cytokine secretion of IL-1ß, IL-6, TNF-α, and IL-18 were increased significantly in COVID-19 patients compared with healthy control group. After treatment with Nano-curcumin, a significant decrease in IL-6 expression and secretion in serum and in supernatant (P = 0.0003, 0.0038, and 0.0001, respectively) and IL-1ß gene expression and secretion level in serum and supernatant (P = 0.0017, 0.0082, and 0.0041, respectively) was observed. However, IL-18 mRNA expression and TNF-α concentration were not influenced by Nano-curcumin. CONCLUSION: Nano-curcumin, as an anti-inflammatory herbal based agent, may be able to modulate the increased rate of inflammatory cytokines especially IL-1ß and IL-6 mRNA expression and cytokine secretion in COVID-19 patients, which may cause an improvement in clinical manifestation and overall recovery.


Subject(s)
COVID-19 Drug Treatment , Curcumin/therapeutic use , Cytokines/blood , SARS-CoV-2 , Adult , Aged , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , Cytokines/genetics , Double-Blind Method , Female , Humans , Male , Micelles , Middle Aged , Nanotechnology , RNA, Messenger/analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL