Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(18): e202115692, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35108437

ABSTRACT

Dedicated to Professor Manfred Scheer on the occasion of his 65th birthday The reaction of (1)Ni(η2 -cod), 2, incorporating a chelating bis(N-heterocyclic carbene) 1, with P4 in pentane yielded the dinuclear complex [(2)Ni]2 (µ2 ,η2 : η2 -P4 ), 3, formally featuring a cyclobutadiene-like, neutral, rectangular, π-bridging P4 -ring. In toluene, the butterfly-shaped complex [(1)Ni]2 (µ2 ,η2 : η2 -P2 ), 4, with a formally neutral P2 -unit was obtained from 2 and either P4 or 3. Computational studies showed that a haptotropic rearrangement involving two isomers of the µ2 ,η2 : η2 -P4 coordination mode and a low-energy µ2 ,η4 : η4 -P4 coordination mode, as previously predicted for related nickel cyclobutadiene complexes, could explain the coalescence observed in the low-temperature NMR spectra of 3. The insertion of the (1)Ni fragment into a P-P bond of P7 (SiMe3 )3 , forming complex 5 with a norbornane-like P7 ligand, was also observed.

2.
Angew Chem Int Ed Engl ; 58(1): 154-158, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30408328

ABSTRACT

Flexible, chelating bis(NHC) ligand 2, able to accommodate both cis- and trans-coordination modes, was used to synthesize (2)Ni(η2 -cod), 3. In reaction with GeCl2 , it produced (2)NiGeCl2 , 4, featuring a T-shaped Ni0 and a pyramidal Ge center. Complex 4 could also be prepared from [(2)GeCl]Cl, 5, and Ni(cod)2 , in a reaction that formally involved Ni-Ge transmetalation, followed by coordination of the extruded GeCl2 moiety to Ni. A computational analysis showed that 4 possesses considerable multiconfigurational character and the Ni→Ge bond is formed through σ-donation from the Ni 4s, 4p, and 3d orbitals to Ge. (NHC)2 Ni(cod) complexes 9 and 10, as well as (NHC)2 GeCl2 derivative 11, incorporating ligands that cannot accommodate a wide bite angle, failed to produce isolable Ni-Ge complexes. The isolation of (2)Ni(η2 -Py), 12, provides further evidence for the reluctance of the (2)Ni0 fragment to act as a σ-Lewis acid.

3.
Chemistry ; 24(3): 672-680, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29119625

ABSTRACT

Four-membered rings with a P2 BCh core (Ch=S, Se) have been synthesized by the reaction of phosphinidene chalcogenide (Ar*P=Ch) and phosphaborene (Mes*P=BNR2 ). The mechanistic pathways towards these rings are explained by detailed computational work that confirmed the preference for the formation of P-P, not P-B, bonded systems, which seems counterintuitive given that both phosphorus atoms contain bulky ligands. The reactivity of the newly synthesized heterocycles, as well as that of the known (RPCh)n rings (n=2, 3), was probed by the addition of N-heterocyclic carbenes, which revealed that all investigated compounds can act as sources of low-coordinate phosphorus species.

4.
Inorg Chem ; 56(21): 13500-13509, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29027797

ABSTRACT

The reactivity of 4-membered (RPCh)2 rings (Ch = S, Se) that contain phosphorus in the +3 oxidation state is reported. These compounds undergo ring expansion to (RPCh)3 with the addition of a Lewis base. The 6-membered rings were found to be more stable than the 4-membered precursors, and the mechanism of their formation was investigated experimentally and by density functional theory calculations. The computational work identified two plausible mechanisms involving a phosphinidene chalcogenide intermediate, either as a free species or stabilized by a suitable base. Both the 4- and 6-membered rings were found to react with coinage metals, giving the same products: (RPCh)3 rings bound to the metal center from the phosphorus atom in tripodal fashion.

5.
Angew Chem Int Ed Engl ; 56(22): 6236-6240, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28071846

ABSTRACT

Four-membered rings with a P2 Ch2 core (Ch=S, Se) and phosphorus in the +3 oxidation state have been synthesized. The utility of these rings as a source of monomeric phosphinidene chalcogenides was probed by the addition of an N-heterocyclic carbene, resulting in a base-stabilized phosphinidene sulfide. Similarly, persistence of the phosphinidene selenide in solution was shown through cycloaddition chemistry with 2,3-dimethylbutadiene at elevated temperatures. The observed reactivity was explained by detailed computational work that established the conditions upon which the P2 Ch2 rings can liberate phosphinidene chalcogenides.

6.
Angew Chem Int Ed Engl ; 54(21): 6274-7, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25865317

ABSTRACT

A Ni(0)-NCN pincer complex featuring a six-membered N-heterocyclic carbene (NHC) central platform and amidine pendant arms was synthesized by deprotonation of its Ni(II) precursor. It retained chloride in the square-planar coordination sphere of nickel and was expected to be highly susceptible to oxidative addition reactions. The Ni(0) complex rapidly activated ammonia at room temperature, in a ligand-assisted process where the carbene carbon atom played the unprecedented role of proton acceptor. For the first time, the coordinated (ammine) and activated (amido) species were observed together in solution, in a solvent-dependent equilibrium. A structural analysis of the Ni complexes provided insight into the highly unusual, non-innocent behavior of the NHC ligand.

SELECTION OF CITATIONS
SEARCH DETAIL
...