Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 39(3): 343-50, 1992 Feb 05.
Article in English | MEDLINE | ID: mdl-18600951

ABSTRACT

An integrated measuring system was developed that directly compares the shape of size distributions of Saccharomyces cerevisiae populations obtained from either microscopic measurements, electronic particle counter, or flow cytometer. Because of its asymmetric mode of growth, a yeast population consists of two different subpopulations, parents and daughters. Although electronic particle counter and flow cytometer represent fast methods to assess the growth state of the population as a whole, the determination of important cell cycle parameters like the fraction of daughters or budded cells requires microscopic observation. We therefore adapted a semiautomatic and interactive 2D-image processing program for rapid and accurate determination of volume distributions of the different sub-populations. The program combines the capacity of image processing and volume calculation by contour-rotation, with the potential of visual evaluation of the cells. High-contrast images from electron micrographs are well suited for image analysis, but the necessary air drying caused the cells to shrink to 35% of their hydrated volume. As an alternative, hydrated cells overstained with the fluorochrome calcofluor and visualized by fluorescence light microscopy were used. Cell volumes calculated from length, and diameter measurements with the assumption of an ellipsoid cell shape were underestimated as compared to volumes derived from 2D-image analysis and contour rotation, because of a deviating cell shape, especially in the older parent cells with more than one bud scar. The bimodal volume distribution obtained from microscopic measurements was identical to the protein distribution measured with the flow cytometer using cells stained with dansylchloride, but differed significantly from the size distribution measured with the electronic particle counter. Compared with the flow cytometer, 2-D image analysis can thus provide accurate distributions with important additional information on, for instance, the distributions of subpopulations like parents, daughters, or budded cells.

3.
J Bacteriol ; 170(10): 4808-15, 1988 Oct.
Article in English | MEDLINE | ID: mdl-2844728

ABSTRACT

Activity changes of a number of enzymes involved in carbohydrate metabolism were determined in cell extracts of fractionated exponential-phase populations of Saccharomyces cerevisiae grown under excess glucose. Cell-size fractionation was achieved by an improved centrifugal elutriation procedure. Evidence that the yeast populations had been fractionated according to age in the cell cycle was obtained by examining the various cell fractions for their volume distribution and their microscopic appearance and by flow cytometric analysis of the distribution patterns of cellular DNA and protein contents. Trehalase, hexokinase, pyruvate kinase, phosphofructokinase 1, and fructose-1,6-diphosphatase showed changes in specific activities throughout the cell cycle, whereas the specific activities of alcohol dehydrogenase and glucose-6-phosphate dehydrogenase remained constant. The basal trehalase activity increased substantially (about 20-fold) with bud emergence and decreased again in binucleated cells. However, when the enzyme was activated by pretreatment of the cell extracts with cyclic AMP-dependent protein kinase, no significant fluctuations in activity were seen. These observations strongly favor posttranslational modification through phosphorylation-dephosphorylation as the mechanism underlying the periodic changes in trehalase activity during the cell cycle. As observed for trehalase, the specific activities of hexokinase and phosphofructokinase 1 rose from the beginning of bud formation onward, finally leading to more than eightfold higher values at the end of the S phase. Subsequently, the enzyme activities dropped markedly at later stages of the cycle. Pyruvate kinase activity was relatively low during the G1 phase and the S phase, but increased dramatically (more than 50-fold) during G2. In contrast to the three glycolytic enzymes investigated, the highest specific activity of the gluconeogenic enzyme fructose-1, 6-diphosphatase 1 was found in fractions enriched in either unbudded cells with a single nucleus or binucleated cells. The observed changes in enzyme activities most likely underlie pronounced alterations in carbohydrate metabolism during the cell cycle.


Subject(s)
Carbohydrate Metabolism , Cell Cycle , Saccharomyces cerevisiae/enzymology , Alcohol Dehydrogenase/genetics , Cell Separation , DNA, Fungal/genetics , Fructose-Bisphosphatase/metabolism , Fungal Proteins/analysis , Glucosephosphate Dehydrogenase/genetics , Hexokinase/metabolism , Phosphofructokinase-1/metabolism , Pyruvate Kinase/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Trehalase/metabolism
4.
J Bacteriol ; 161(2): 478-83, 1985 Feb.
Article in English | MEDLINE | ID: mdl-3918013

ABSTRACT

The nucleoid of living and OsO4- or glutaraldehyde-fixed cells of Escherichia coli strains was studied with a phase-contrast microscope, a confocal scanning light microscope, and an electron microscope. The trustworthiness of the images obtained with the confocal scanning light microscope was investigated by comparison with phase-contrast micrographs and reconstructions based on serially sectioned material of DNA-containing and DNA-less cells. This comparison showed higher resolution of the confocal scanning light microscope as compared with the phase-contrast microscope, and agreement with results obtained with the electron microscope. The effects of fixation on the structure of the nucleoid were studied in E. coli B/r H266. Confocal scanning light micrographs and electron microscopic reconstructions showed that the shape of the nucleoid remained similar after OsO4 or glutaraldehyde fixation; however, the OsO4 nucleoid appeared to be somewhat smaller and more centralized within the cell.


Subject(s)
Cell Nucleus/ultrastructure , Escherichia coli/ultrastructure , DNA, Bacterial/analysis , Glutaral/pharmacology , Microscopy, Electron , Microscopy, Phase-Contrast , Osmium Tetroxide/pharmacology
5.
J Bacteriol ; 160(3): 1151-7, 1984 Dec.
Article in English | MEDLINE | ID: mdl-6389508

ABSTRACT

The refractive indices of nucleoid and cytoplasm in Escherichia coli were derived theoretically and experimentally. For the theoretical estimates, we made use of the known macromolecular composition of E. coli B/r (G. Churchward and H. Bremer, J. Theor. Biol. 94:651-670, 1982) and of estimates of cell and nucleoid volumes. These were obtained from micrographs of living bacteria made with a confocal scanning light microscope. The theoretical values were calculated, assuming that all DNA occurred in the nucleoid and that all protein and RNA occurred in the cytoplasm. Comparison with experimental refractive index values directly obtained by immersive refractometry showed that, besides its DNA, the nucleoid must contain an additional amount of solids equivalent to 8.6% (wt/vol) protein. With the nucleoid containing 6.8% (wt/vol) DNA and 8.6% (wt/vol) protein and the cytoplasm containing 21% (wt/vol) protein and 4% (wt/vol) RNA, a mass difference is obtained, which accounts for the phase separation observed between the nucleoid and cytoplasm in living cells by phase-contrast microscopy. The decrease in the refractive index of the nucleoid relative to that of the cytoplasm observed upon, for instance, OsO4 fixation was interpreted as being indicative of the loss of protein content in the nucleoid.


Subject(s)
Escherichia coli/ultrastructure , Chloramphenicol/pharmacology , Cytoplasm/ultrastructure , Escherichia coli/drug effects , Microscopy, Phase-Contrast/methods , Refractometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...