Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 426: 115607, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34089742

ABSTRACT

Sertoli cells (SC) structurally support and transport nutrients to germ cells during spermatogenesis facilitated by an active cytoskeleton. Chemical perturbation of SC microtubule (MT) dynamics instability leads to premature germ cell exfoliation demonstrating that this process is essential for male fertility, yet the effects of MT damaging drugs on SC lipid metabolism have been less explored. The aim of this study was to advance our understanding of how adequate SC MT dynamicity is needed to finely tune lipid homeostasis. To elucidate the role of MT dynamics instability on the latter, we suppressed MT dynamicity by long-term exposures to 10 nM of nocodazole (NCZ) on TM4-SC cultures. Inhibition of MT dynamics instability affected the distribution of [3H] arachidonate on TM4-SC. Triacylglycerols (TAG) exhibited a higher proportion of the [3H] label, with significantly lower percentages in the mitochondrial phospholipid cardiolipin, and notably, also in phosphatidylethanolamine. A noteworthy and progressive accumulation of lipid droplets during the period of exposure to NCZ was accompanied by increased TAG levels but not cholesterol levels in TM4-SC. NCZ-exposed cells reduced their mitochondrial membrane potential and increased ROS production without triggering apoptosis, had a compromised autophagic flux, and lost their transferrin expression. Although SC morphology was preserved, the NCZ-exposed cells displayed alteration of the normal organization of microfilaments (f-actin) and intermediate filaments (vimentin). Our findings suggest that a preserved MT dynamicity is essential in the maintenance of lipid and fatty acids homeostasis in SC, and thus highlights a novel target in these cells for drugs that impair MT dynamicity.


Subject(s)
Lipid Metabolism , Microtubules/metabolism , Sertoli Cells/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line , Cell Survival/drug effects , Cytoskeletal Proteins/metabolism , Homeostasis/drug effects , Lipid Droplets/metabolism , Lipid Metabolism/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Microtubules/drug effects , Mitochondria/drug effects , Mitochondria/physiology , Nocodazole/pharmacology , Sertoli Cells/drug effects , Tubulin Modulators/pharmacology
2.
J Mol Neurosci ; 40(1-2): 87-90, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19705088

ABSTRACT

The structural and functional properties of the nicotinic acetylcholine receptor (AChR), the archetype molecule in the superfamily of Cys-looped ligand-gated ion channels, are strongly dependent on the lipids in the vicinal microenvironment. The influence on receptor properties is mainly exerted by the AChR-vicinal ("shell" or "annular") lipids, which occur in the liquid-ordered phase as opposed to the more disordered and "fluid" bulk membrane lipids. Fluorescence studies from our laboratory have identified discrete sites for fatty acids, phospholipids, and cholesterol on the AChR protein, and electron-spin resonance spectroscopy has enabled the establishment of the stoichiometry and selectivity of the shell lipid for the AChR and the disclosure of lipid sites in the AChR transmembrane region. Experimental evidence supports the notion that the interface between the protein moiety and the adjacent lipid shell is the locus of a variety of pharmacologically relevant processes, including the action of steroids and other lipids. I surmise that the outermost ring of M4 helices constitutes the boundary interface, most suitable to convey the signals from the lipid microenvironment to the rest of the transmembrane region, and to the channel inner ring in particular.


Subject(s)
Ion Channels/chemistry , Ion Channels/physiology , Membrane Lipids/chemistry , Membrane Lipids/physiology , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/physiology , Animals , Cholesterol/chemistry , Cholesterol/physiology , Fatty Acids/chemistry , Fatty Acids/physiology , Humans , Ion Channels/drug effects , Phospholipids/chemistry , Phospholipids/physiology , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/physiology , Receptors, Nicotinic/drug effects , Synaptic Membranes/chemistry , Synaptic Membranes/drug effects , Synaptic Membranes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...