Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mucosal Immunol ; 14(6): 1271-1281, 2021 11.
Article in English | MEDLINE | ID: mdl-34341502

ABSTRACT

Expression of Ikaros family transcription factor IKZF3 (Aiolos) increases during murine eosinophil lineage commitment and maturation. Herein, we investigated Aiolos expression and function in mature human and murine eosinophils. Murine eosinophils deficient in Aiolos demonstrated gene expression changes in pathways associated with granulocyte-mediated immunity, chemotaxis, degranulation, ERK/MAPK signaling, and extracellular matrix organization; these genes had ATAC peaks within 1 kB of the TSS that were enriched for Aiolos-binding motifs. Global Aiolos deficiency reduced eosinophil frequency within peripheral tissues during homeostasis; a chimeric mouse model demonstrated dependence on intrinsic Aiolos expression by eosinophils. Aiolos deficiency reduced eosinophil CCR3 surface expression, intracellular ERK1/2 signaling, and CCL11-induced actin polymerization, emphasizing an impaired functional response. Aiolos-deficient eosinophils had reduced tissue accumulation in chemokine-, antigen-, and IL-13-driven inflammatory experimental models, all of which at least partially depend on CCR3 signaling. Human Aiolos expression was associated with active chromatin marks enriched for IKZF3, PU.1, and GATA-1-binding motifs within eosinophil-specific histone ChIP-seq peaks. Furthermore, treating the EOL-1 human eosinophilic cell line with lenalidomide yielded a dose-dependent decrease in Aiolos. These collective data indicate that eosinophil homing during homeostatic and inflammatory allergic states is Aiolos-dependent, identifying Aiolos as a potential therapeutic target for eosinophilic disease.


Subject(s)
Chemotaxis, Leukocyte/genetics , Chemotaxis, Leukocyte/immunology , Eosinophils/immunology , Eosinophils/metabolism , Ikaros Transcription Factor/genetics , Allergens/immunology , Animals , Disease Susceptibility , Female , Gene Expression Profiling , Gene Expression Regulation , Granulocytes/immunology , Granulocytes/metabolism , Humans , Ikaros Transcription Factor/metabolism , Immunity, Innate , Immunophenotyping , Leukocyte Count , Male , Mice , Mice, Knockout , Models, Animal , Receptors, CCR3/genetics , Receptors, CCR3/metabolism , Signal Transduction
2.
J Immunol ; 207(4): 1044-1054, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34330753

ABSTRACT

Eosinophils develop in the bone marrow from hematopoietic progenitors into mature cells capable of a plethora of immunomodulatory roles via the choreographed process of eosinophilopoiesis. However, the gene regulatory elements and transcription factors (TFs) orchestrating this process remain largely unknown. The potency and resulting diversity fundamental to an eosinophil's complex immunomodulatory functions and tissue specialization likely result from dynamic epigenetic regulation of the eosinophil genome, a dynamic eosinophil regulome. In this study, we applied a global approach using broad-range, next-generation sequencing to identify a repertoire of eosinophil-specific enhancers. We identified over 8200 active enhancers located within 1-20 kB of expressed eosinophil genes. TF binding motif analysis revealed PU.1 (Spi1) motif enrichment in eosinophil enhancers, and chromatin immunoprecipitation coupled with massively parallel sequencing confirmed PU.1 binding in likely enhancers of genes highly expressed in eosinophils. A substantial proportion (>25%) of these PU.1-bound enhancers were unique to murine, culture-derived eosinophils when compared among enhancers of highly expressed genes of three closely related myeloid cell subsets (macrophages, neutrophils, and immature granulocytes). Gene ontology analysis of eosinophil-specific, PU.1-bound enhancers revealed enrichment for genes involved in migration, proliferation, degranulation, and survival. Furthermore, eosinophil-specific superenhancers were enriched in genes whose homologs are associated with risk loci for eosinophilia and allergic diseases. Our collective data identify eosinophil-specific enhancers regulating key eosinophil genes through epigenetic mechanisms (H3K27 acetylation) and TF binding (PU.1).


Subject(s)
Chromatin/genetics , Eosinophils/metabolism , Epigenesis, Genetic/genetics , Protein Binding/genetics , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Animals , Cells, Cultured , Mice , Mice, Inbred BALB C , Myeloid Cells , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics
3.
Oncogene ; 40(12): 2182-2199, 2021 03.
Article in English | MEDLINE | ID: mdl-33627785

ABSTRACT

The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis. The PAX3-FOXO1 directly binds to FOXF1 enhancers and induces FOXF1 gene expression. CRISPR/Cas9 mediated inactivation of either FOXF1 coding sequence or FOXF1 enhancers suppresses FP-RMS tumorigenesis even in the presence of PAX3-FOXO1 oncogene. Knockdown or genetic knockout of FOXF1 induces myogenic differentiation in PAX3-FOXO1-positive FP-RMS. Over-expression of FOXF1 decreases myogenic differentiation in primary human myoblasts. In FP-RMS tumor cells, FOXF1 protein binds chromatin near enhancers associated with FP-RMS gene signature. FOXF1 cooperates with PAX3-FOXO1 and E-box transcription factors MYOD1 and MYOG to regulate FP-RMS-specific gene expression. Altogether, FOXF1 functions downstream of PAX3-FOXO1 to promote FP-RMS tumorigenesis.


Subject(s)
Carcinogenesis/genetics , Forkhead Box Protein O1/genetics , Forkhead Transcription Factors/genetics , PAX3 Transcription Factor/genetics , Rhabdomyosarcoma/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Humans , Muscle Development/genetics , MyoD Protein/genetics , Myogenin/genetics , Rhabdomyosarcoma/pathology
4.
J Exp Med ; 217(1)2020 01 06.
Article in English | MEDLINE | ID: mdl-31653690

ABSTRACT

Activation of T cells is dependent on the organized and timely opening and closing of chromatin. Herein, we identify AP-1 as the transcription factor that directs most of this remodeling. Chromatin accessibility profiling showed quick opening of closed chromatin in naive T cells within 5 h of activation. These newly opened regions were strongly enriched for the AP-1 motif, and indeed, ChIP-seq demonstrated AP-1 binding at >70% of them. Broad inhibition of AP-1 activity prevented chromatin opening at AP-1 sites and reduced the expression of nearby genes. Similarly, induction of anergy in the absence of co-stimulation during activation was associated with reduced induction of AP-1 and a failure of proper chromatin remodeling. The translational relevance of these findings was highlighted by the substantial overlap of AP-1-dependent elements with risk loci for multiple immune diseases, including multiple sclerosis, inflammatory bowel disease, and allergic disease. Our findings define AP-1 as the key link between T cell activation and chromatin remodeling.


Subject(s)
Chromatin/metabolism , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Transcription Factor AP-1/immunology , Binding Sites/immunology , Cells, Cultured , Chromatin Assembly and Disassembly/immunology , Gene Expression Regulation/immunology , Humans , Hypersensitivity/immunology , Inflammatory Bowel Diseases/immunology , Multiple Sclerosis/immunology
5.
Methods Mol Biol ; 1783: 343-360, 2018.
Article in English | MEDLINE | ID: mdl-29767371

ABSTRACT

The massive amount of information produced by ChIP-Seq, RNA-Seq, and other next-generation sequencing-based methods requires computational data analysis. However, biologists performing these experiments often lack training in bioinformatics. BioWardrobe aims to bridge this gap by providing a convenient user interface and by automating routine data-processing steps. This protocol details the use of BioWardrobe for identifying and visualizing ChIP-Seq peaks, calculating RPKMs, performing differential binding or gene expression analysis, and creating plots and heat maps. We specifically describe how to use BioWardrobe's quality control measures for troubleshooting NGS-based experiments.


Subject(s)
Chromatin Immunoprecipitation/methods , Computational Biology/methods , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Transcriptome , Chromatin/genetics , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Humans , Quality Control , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...