ABSTRACT
Transport processes across membranes play central roles in any biological system. They are essential for homeostasis, cell nutrition, and signaling. Fluxes across membranes are governed by fundamental thermodynamic rules and are influenced by electrical potentials and concentration gradients. Transmembrane transport processes have been largely studied on single membranes. However, several important cellular or subcellular structures consist of two closely spaced membranes that form a membrane sandwich. Such a dual membrane structure results in remarkable properties for the transport processes that are not present in isolated membranes. At the core of membrane sandwich properties, a small intermembrane volume is responsible for efficient coupling between the transport systems at the two otherwise independent membranes. Here, we present the physicochemical principles of transport coupling at two adjacent membranes and illustrate this concept with three examples. In the supplementary material, we provide animated PowerPoint presentations that visualize the relationships. They could be used for teaching purposes, as has already been completed successfully at the University of Talca.
ABSTRACT
Two-pore channels (TPCs) are members of the superfamily of ligand-gated and voltage-sensitive ion channels in the membranes of intracellular organelles of eukaryotic cells. The evolution of ordinary plant TPC1 essentially followed a very conservative pattern, with no changes in the characteristic structural footprints of these channels, such as the cytosolic and luminal regions involved in Ca2+ sensing. In contrast, the genomes of mosses and liverworts encode also TPC1-like channels with larger variations at these sites (TPC1b channels). In the genome of the model plant Physcomitrium patens we identified nine non-redundant sequences belonging to the TPC1 channel family, two ordinary TPC1-type, and seven TPC1b-type channels. The latter show variations in critical amino acids in their EF-hands essential for Ca2+ sensing. To investigate the impact of these differences between TPC1 and TPC1b channels, we generated structural models of the EF-hands of PpTPC1 and PpTPC1b channels. These models were used in molecular dynamics simulations to determine the frequency with which calcium ions were present in a coordination site and also to estimate the average distance of the ions from the center of this site. Our analyses indicate that the EF-hand domains of PpTPC1b-type channels have a lower capacity to coordinate calcium ions compared with those of common TPC1-like channels.
ABSTRACT
Predicting plastic responses is crucial to assess plant species potential to adapt to climate change, but little is known about which factors drive the biogeographical patterns of phenotypic plasticity in plants. Theory predicts that climatic variability would select for increased phenotypic plasticity, whereas evidence indicates that stressful conditions can limit phenotypic plasticity. Using a meta-analytic, phylogeny-corrected approach to global data on plant phenotypic plasticity, we tested whether latitude, climate, climatic variability and/or stressful conditions are predictors of plastic responses at a biogeographical scale. We found support for a positive association between phenotypic plasticity and climatic variability only for plasticity in allocation. Plasticity in leaf morphology, size and physiology were positively associated with mean annual temperature. We also found evidence that phenotypic plasticity in physiology is limited by cold stress. Overall, plant plastic responses to non-climatic factors were stronger than responses to climatic factors. However, while climatic conditions were associated with plant plastic responses to climatic factors, they generally did not relate to plastic responses to other abiotic or biotic factors. Our study highlights the need to consider those factors that favour and limit phenotypic plasticity in order to improve predictive frameworks addressing plant species' potential to adapt to climate change.
Subject(s)
Adaptation, Physiological , Plants , Climate Change , Phylogeny , TemperatureABSTRACT
PREMISE: Knowledge of intra-specific variation in seed traits and its environmental determinants is important for predicting plant responses to environmental changes. Here, we tested the hypothesis that differences in soil fertility and rainfall during specific phenological phases drive variation in seed traits in a widely distributed tree, Copaifera langsdorffii. We also tested the hypothesis that climatic heterogeneity increases within-plant variation in seed traits. METHODS: Inter- and intra-population and within-plant variation in seed mass, number, and seed size/seed number were evaluated for 50 individuals from five populations distributed along a rainfall gradient and occurring on varying soil types. Using multivariate approaches, we tested the effects of soil fertility characteristics and rainfall in five reproductive phenological phases on seed traits. RESULTS: The seed traits varied greatly both among populations and within plants. Inter-population variation in seed mass was driven by total rainfall during fruit development, and variation in seed number was influenced by total rainfall during the dry season before the reproductive phase. Phosphorus levels and potential acidity of the soil also explained the variations in seed mass and seed mass/seed number, respectively. A positive association between intra-annual variation in rainfall and within-plant variation in seed mass and seed number was found. CONCLUSION: Both rainfall during specific reproductive phases and soil conditions shape the variation in the seed mass and number of C. langsdorffii. Environment-driven seed trait variation may contribute to this species' broad niche breadth, which in turn may determine the species' persistence under future climatic conditions.
Subject(s)
Fabaceae , Trees , Fertility , Seeds , SoilABSTRACT
Angiosperms are highly diverse in their reproductive systems, including predominantly selfing, exclusive outcrossing, and mixed mating systems. Even though selfing can have negative consequences on natural populations, it has been proposed that plants having a predominantly selfing strategy are also associated with fast development strategies through time limitation mechanisms that allow them to complete their life cycle before the onset of severe drought. This relationship might be affected by the challenges imposed by global change, such as a decrease in pollinator availability and the earlier and more severe onset of droughts. In this work, our aim was to investigate whether selfing is correlated with a dehydration avoidance strategy, and how this could affect drought resistance and survival in two species with different types of selfing: pollinator-independent delayed selfing (Schizanthus grahamii) and pollinator-dependent selfing (Schizanthus hookeri), representing a gradient in selfing rates. We hypothesize that delayed selfing species and highly selfing populations will show "fast" plant traits whereas we will find no pattern in more outcrossed populations of the pollinator-dependent species. However, we predicted that high selfing populations would have lower survival rates when exposed to chronic drought early in their development since fast traits imply physiological compromises that will affect their drought survival. To evaluate these hypotheses, we characterized different physiological and morphological traits in response to two contrasting treatments (moist and dry) in a total of six populations of the two species. We found a relationship between the delayed selfing species and a dehydration avoidance strategy and also with low drought survival. Our work offers evidence to support the importance of abiotic factors, such as drought, on the possible variation in selfing rates on natural populations, and the effect that this mating system could have in their ability to face new environmental conditions such as those imposed by climate change.
ABSTRACT
Intraspecific trait variation has been singled out as an important mechanism by which individuals can cope with environmental variations and avoid local extinctions. Here we evaluate variation in metamer traits (i.e., traits associated with internodes, petioles and their corresponding leaves) and parameters of chlorophyll fluorescence within and among populations of a neotropical tree, Copaifera langsdorffii. We also evaluated phenotypic plasticity in natural settings comparing traits between shade and sun-exposed metamers. We selected six populations along a climatic gradient ranging from semi-arid to humid and representing three different biomes (Caatinga, Cerrado, and Atlantic Forest). Local climatic conditions significantly affected the morphological and physiological traits of populations. Trait variation among populations was explained mainly by aridity index and evapotranspiration. Individuals from drier regions had lower specific leaf area (SLA), lower investment in leaf area per total dry mass of metamer (LARm), lower specific petiole length (SPL) and lower potential quantum yield (Fv/Fm, only for sun-exposed metamers). Populations from locations with greater environmental heterogeneity (interannual variation) had greater plasticity in response to light for Fv/Fm and electron transport rate (ETR) and morphological traits related to the hydraulic and biomechanical aspects of the leaves (petiole length, internode length and SPL). High intraspecific variation in metamer traits in C. langsdorffii coupled with its ability to modify these traits in response to different climate conditions can explain the success of the species over a range of different habitats and represent important factors for the persistence of this species in the face of climate change.
Subject(s)
Adaptation, Physiological , Fabaceae/physiology , Plant Leaves/physiology , Chlorophyll/metabolism , Climate Change , Fabaceae/metabolism , Phenotype , Plant Leaves/metabolism , Quantitative Trait LociABSTRACT
We studied key mechanisms and drivers of soil functioning by analyzing soil respiration and enzymatic activity in Mediterranean holm oak forest fragments with different influence of the agricultural matrix. For this, structural equation models (SEM) were built including data on soil abiotic (moisture, temperature, organic matter, pH, nutrients), biotic (microbial biomass, bacterial and fungal richness), and tree-structure-related (basal area) as explanatory variables of soil enzymatic activity and respiration. Our results show that increased tree growth induced by forest fragmentation in scenarios of high agricultural matrix influence triggered a cascade of causal-effect relations, affecting soil functioning. On the one hand, soil enzymatic activity was strongly stimulated by the abiotic (changes in pH and microclimate) and biotic (microbial biomass) modifications of the soil environment arising from the increased tree size and subsequent soil organic matter accumulation. Soil CO2 emissions (soil respiration), which integrate releases from all the biological activity occurring in soils (autotrophic and heterotrophic components), were mainly affected by the abiotic (moisture, temperature) modifications of the soil environment caused by trees. These results, therefore, suggest that the increasing fragmentation of forests may profoundly impact the functioning of the plant-soil-microbial system, with important effects over soil CO2 emissions and nutrient cycling at the ecosystem level. Forest fragmentation is thus revealed as a key albeit neglected factor for accurate estimations of soil carbon dynamics under global change scenarios.
ABSTRACT
The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .
Subject(s)
Climate , Ecosystem , Introduced Species , Plants/classification , California , Chile , Plant Physiological Phenomena , South Africa , Spain , Stress, Physiological , Western AustraliaABSTRACT
Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species' responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density) did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in SM availability established over short distances (<500 m) facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and SM in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale.
ABSTRACT
Few non-native species have colonized Antarctica, although increased human activity and accelerated climate change may increase their number, distributional range, and effects on native species on the continent. We searched 13 sites on the maritime Antarctic islands and 12 sites on the Antarctic Peninsula for annual bluegrass (Poa annua), a non-native flowering plant. We also evaluated the possible effects of competition between P. annua and 2 vascular plants native to Antarctica, Antarctic pearlwort (Colobanthus quitensis) and Antarctic hairgrass (Deschampsia antarctica). We grew the native species in experimental plots with and without annual bluegrass under conditions that mimicked the Antarctic environment. After 5 months, we measured photosynthetic performance on the basis of chlorophyll fluorescence and determined total biomass of both native species. We found individual specimens of annual bluegrass at 3 different sites on the Antarctic Peninsula during the 2007-2008 and 2009-2010 austral summers. The presence of bluegrass was associated with a statistically significant reduction in biomass of pearlwort and hairgrass, whereas the decrease in biomass of bluegrass was not statistically significant. Similarly, the presence of bluegrass significantly reduced the photosynthetic performance of the 2 native species. Sites where bluegrass occurred were close to major maritime routes of scientific expeditions and of tourist cruises to Antarctica. We believe that if current levels of human activity and regional warming persist, more non-native plant species are likely to colonize the Antarctic and may affect native species.
Subject(s)
Caryophyllaceae/growth & development , Introduced Species , Poa/growth & development , Poaceae/growth & development , Antarctic Regions , Caryophyllaceae/metabolism , Climate Change , Human Activities , Humans , Poa/metabolism , Poaceae/metabolism , Seasons , Species SpecificityABSTRACT
BACKGROUND AND AIMS: While the climbing habit allows vines to reach well-lit canopy areas with a minimum investment in support biomass, many of them have to survive under the dim understorey light during certain stages of their life cycle. But, if the growth/survival trade-off widely reported for trees hold for climbing plants, they cannot maximize both light-interception efficiency and shade avoidance (i.e. escaping from the understorey). The seven most important woody climbers occurring in a Chilean temperate evergreen rainforest were studied with the hypothesis that light-capture efficiency of climbers would be positively associated with their abundance in the understorey. METHODS: Species abundance in the understorey was quantified from their relative frequency and density in field plots, the light environment was quantified by hemispherical photography, the photosynthetic response to light was measured with portable gas-exchange analyser, and the whole shoot light-interception efficiency and carbon gain was estimated with the 3-D computer model Y-plant. KEY RESULTS: Species differed in specific leaf area, leaf mass fraction, above ground leaf area ratio, light-interception efficiency and potential carbon gain. Abundance of species in the understorey was related to whole shoot features but not to leaf level features such as specific leaf area. Potential carbon gain was inversely related to light-interception efficiency. Mutual shading among leaves within a shoot was very low (<20 %). CONCLUSIONS: The abundance of climbing plants in this southern rainforest understorey was directly related to their capacity to intercept light efficiently but not to their potential carbon gain. The most abundant climbers in this ecosystem match well with a shade-tolerance syndrome in contrast to the pioneer-like nature of climbers observed in tropical studies. The climbers studied seem to sacrifice high-light searching for coping with the dim understorey light.
Subject(s)
Adaptation, Physiological , Ecosystem , Plant Leaves/physiology , Plant Physiological Phenomena , Sunlight , Biodiversity , Chile , Cissus/physiology , Computer Simulation , Darkness , Hydrangea/physiology , Models, Biological , Photosynthesis/physiology , Plant Development , Plant Shoots/physiology , Plants/metabolismABSTRACT
In the evergreen shrubland vegetation of Mexico (mexical), most of the species are sclerophyllous woody plants with steep leaf angles. This architectural pattern has been interpreted as a strategy to cope with water shortages and high radiation. However, the current association between evergreenness and steep leaf angles across mexical plant species could be the result of an adaptive association achieved through correlated evolutionary change between both traits or, alternatively, may be the result of common evolutionary ancestry. In this study, we quantified leaf angle in 28 dominant species under a phylogenetic framework and evaluated the functional implications of the observed range of leaf angles in terms of leaf temperature, water potentials and transpiration by combining manipulative experiments restraining leaves horizontally with microclimatic and stomatal conductance measurements in selected species and energy balance calculations. Horizontally restrained leaves exhibited reduced water potentials and stomatal conductances, and significantly increased temperatures and transpiration rates. Steeply inclined leaves operated near air temperatures and could sustain relatively high stomatal conductances during the dry season since they were associated with low transpiration rates. Phylogenetic analyses showed that steep leaf angles evolved in a correlated fashion in evergreen species. The functional consequences of leaf angle together with the phylogenetic analysis indicate the adaptive nature of this trait which allows the evergreen species to cope with arid conditions and therefore to persist within the mexical community.