Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Genome ; 16(2): e20346, 2023 06.
Article in English | MEDLINE | ID: mdl-37139645

ABSTRACT

Genomic selection (GS) proposed by Meuwissen et al. more than 20 years ago, is revolutionizing plant and animal breeding. Although GS has been widely accepted and applied to plant and animal breeding, there are many factors affecting its efficacy. We studied 14 real datasets to respond to the practical question of whether the accuracy of genomic prediction increases when considering genomic as compared with not using genomic. We found across traits, environments, datasets, and metrics, that the average gain in prediction accuracy when genomic information is considered was 26.31%, while only in terms of Pearson's correlation the gain was of 46.1%, while only in terms of normalized root mean squared error the gain was of 6.6%. If the quality of the makers and relatedness of the individuals increase, major gains in prediction accuracy can be obtained, but if these two factors decrease, a lower increase is possible. Finally, our findings reinforce genomic is vital for improving the prediction accuracy and, therefore, the realized genetic gain in genomic assisted plant breeding programs.


Subject(s)
Plant Breeding , Selection, Genetic , Animals , Models, Genetic , Genome , Genomics
2.
Genes (Basel) ; 14(2)2023 02 02.
Article in English | MEDLINE | ID: mdl-36833322

ABSTRACT

Genomic selection (GS) is a methodology that is revolutionizing plant breeding because it can select candidate genotypes without phenotypic evaluation in the field. However, its practical implementation in hybrid prediction remains challenging since many factors affect its accuracy. The main objective of this study was to research the genomic prediction accuracy of wheat hybrids by adding covariates with the hybrid parental phenotypic information to the model. Four types of different models (MA, MB, MC, and MD) with one covariate (same trait to be predicted) (MA_C, MB_C, MC_C, and MD_C) or several covariates (of the same trait and other correlated traits) (MA_AC, MB_AC, MC_AC, and MD_AC) were studied. We found that the four models with parental information outperformed models without parental information in terms of mean square error by at least 14.1% (MA vs. MA_C), 5.5% (MB vs. MB_C), 51.4% (MC vs. MC_C), and 6.4% (MD vs. MD_C) when parental information of the same trait was used and by at least 13.7% (MA vs. MA_AC), 5.3% (MB vs. MB_AC), 55.1% (MC vs. MC_AC), and 6.0% (MD vs. MD_AC) when parental information of the same trait and other correlated traits were used. Our results also show a large gain in prediction accuracy when covariates were considered using the parental phenotypic information, as opposed to marker information. Finally, our results empirically demonstrate that a significant improvement in prediction accuracy was gained by adding parental phenotypic information as covariates; however, this is expensive since, in many breeding programs, the parental phenotypic information is unavailable.


Subject(s)
Models, Genetic , Triticum , Triticum/genetics , Polymorphism, Single Nucleotide , Plant Breeding , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...