Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stud Health Technol Inform ; 140: 79-84, 2008.
Article in English | MEDLINE | ID: mdl-18810004

ABSTRACT

Since several years our group is working on a project to merge into a full 3D reliable and detailed human skeleton representation various segmental biomechanical models presented in literature. The obtained 3D skeleton model is fully parametric and can be fitted to each subject anthropometric characteristics. A non-ionising approach based on 3D opto-electronic measurements of body landmarks labelled by passive markers has been chosen to build the 3D parametric biomechanical skeleton model. A special focus has been devoted to identify and model the spine with a correct degree of accuracy and reliability. In spine pain related pathologies is of major importance the evaluation of functional limitations associated. This requires to integrate morphological characteristics with information deriving from other measurements devices as force platform data, surface EMG, foot pressure maps. The aim of this study is to present a multi-factorial approach which integrates rachis morphological characteristics with full skeleton kinematic, dynamic and SEMG measurements to quantify spine function and mobility in particular for neck and low back pain. A set of clinical-biomechanical tests have been implemented. Static posture characteristics are first evaluated. After that, patient is asked to perform specific motion test batteries in order to fully measure the whole ROMs (spine angles ranges and spine shape modifications) for Axial rotations, forward-backward flexion-extension, lateral bendings per each spine functional units (Skull and neck, thoracic and lumbar districts). During forward bending also a digital Schober test is performed. Such data are correlated to simultaneous SEMG muscle activities recording to investigate motor co-ordination/dysfunction as well as the presence absence of flexion-relaxation phenomena associated to pain.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Low Back Pain/diagnosis , Neck Pain/diagnosis , Skeleton , Spine/physiopathology , Anthropometry , Biomechanical Phenomena , Electromyography/instrumentation , Electromyography/methods , Humans , Imaging, Three-Dimensional/methods , Low Back Pain/physiopathology , Models, Theoretical , Neck Pain/physiopathology , Posture
2.
Arch Ital Biol ; 145(2): 99-110, 2007 May.
Article in English | MEDLINE | ID: mdl-17639782

ABSTRACT

Brain derived growth factor (BDNF) gene of rat has a complex structure: at least four 5' untranslated exons regulated by different promoters and one 3' exon containing the encoding region. BDNF is expressed by skeletal muscles in an activity-dependent manner. In this study, BDNF mRNA was analysed by RT-PCR in the soleus muscle following a single (acute) session of running or a training of five days of running (repetitive exercise). Moreover, the expression of the exons was quantitatively analysed by real time RT-PCR. Finally, muscle BDNF protein level was evaluated by western blotting. BDNF mRNA was found to increase over the second day after acute exercise; on the other hand, two peaks (2 and 24 hours after the last session, respectively) in BDNF mRNA level were found after repetitive exercise, but it was similar to that of controls 6 hours after the last session. BDNF protein level progressively increased also after the mRNA went back to the basal level, so suggesting that it cumulates within the cell after acute exercise, whereas it followed the mRNA level time course after repetitive exercise. These results point to the following conclusions: BDNF mRNA is up-regulated by activity, but this response is delayed to the second day after acute exercise; repetitive exercise transiently depresses the expression of BDNF mRNA, so that the over-expression due to the previous day's exercise completely disappears 6 hours after the last exercise session.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Gene Expression Regulation/physiology , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Alternative Splicing/genetics , Animals , Down-Regulation/physiology , Exercise Test , Male , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...