Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842046

ABSTRACT

A series of tertiary sulfide-tellurides, BaMxTeS (M = Fe, Mn, Zn, Ge), has been synthesized by solid-state synthesis. The compounds assume an orthorhombic crystal structure, described by the Cmcm (No. 63) space group, and are structural analogs of the BaMSO (M = Co, Zn) phases. The properties of all four analogs are investigated by DFT analysis. As only the BaFeTeS analog was prepared as a relatively pure phase, this homologue was subject to further experimental investigations, including heat capacity, magnetometry, and Mössbauer spectroscopy. BaFeTeS exhibits no obvious phase transition between 2 and 300 K, has no paramagnetic behavior, and lacks long-range magnetic ordering. However, the Mössbauer spectra, as well as electrical resistance data, indicate a hidden transition near 200 K that is tentatively explained by a dynamic charge-density-wave mechanism, based on a resonating valence bond (RVB) model.

2.
ACS Omega ; 9(20): 22145-22155, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799367

ABSTRACT

Two homologues in a series of quinary oxysulfides, La14TME6CuS24O4 (TME = Cr or Fe), have been synthesized by solid-state synthesis in sealed ampules, and their structures are homologue to assume a novel crystal structure. X-ray diffraction analyses of single crystal and powder samples give a monoclinic lattice, described in the C2/m (No. 12) space group, with lattice parameters a = 15.3853(5) Å, b = 13.9729(5) Å, c = 10.5074(4) Å, and ß = 116.227(3)° for the Cr analogue and a = 15.4303(2) Å, b = 14.0033(2) Å, c = 10.4909(2) Å, and ß = 116.261(2)° for Fe. The crystal structure contains one-dimensional (1D) chains consisting of interconnected transition metal element (TME) trimers, which are further arranged into two-dimensional (2D) layers. These spin-chain planes are interspaced with 1D chains of lanthanum-oxygen coordinations and an apparent disordered occupation of copper sites. Alternating current (AC) and direct current (DC) magnetic susceptibility measurements show that the Cr and Fe analogues exhibit what is best described as spin-domain formation. Density functional theory (DFT) calculations suggest the formal oxidation state of the species is best represented in the form La14TME52+TME3+Cu+S24O4.

3.
Inorg Chem ; 63(23): 10594-10602, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38787284

ABSTRACT

Large quantities of high-purity NH4CrF3 have been synthesized using a wet-chemical method, and its structural chemistry and magnetic properties are investigated in detail for the first time. NH4CrF3 is a tetragonal fluoroperovskite that displays an ordering of the ammonium (NH4+) groups at room temperature and C-type orbital ordering. The ammonium groups order and display distinct signs of hydrogen bonds to nearby fluoride anions by buckling the Cr-F-Cr angle away from 180°. The ammonium ordering remains up to 405 K, much higher than in other ammonium fluoroperovskites, indicating a correlation between the flexibility of the Jahn-Teller ion, the hydrogen bond formation, and the ammonium ordering. At 405 K, an order-to-disorder transition occurs, where the ammonium groups disorder, corresponding to a transition to higher symmetry. This is accompanied by a contraction of the unit cell from breaking hydrogen bonds, similar to the phenomenon observed in water ice melting. The compound orders antiferromagnetically with a Neél temperature of 60 K, an effective paramagnetic moment of 4.3 µB, and a Weiss temperature of -33 K. An A-type antiferromagnetic structure is identified by neutron diffraction, with an ordered moment of 3.72(2) µB.

4.
Inorg Chem ; 62(32): 13081-13088, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37531570

ABSTRACT

The oxychloride SrTe2FeO6Cl is obtained by high-temperature solid-state synthesis under inert conditions in closed reaction vessels. The compound crystallizes in a novel monoclinic crystal structure that is described in the space group P121/n1 (No. 14). The unit cell parameters, a = 10.2604(1) Å, b = 5.34556(5) Å, c = 26.6851(3) Å, and ß = 93.6853(4)°, and atomic parameters were determined from synchrotron diffraction data, starting from a model that was obtained from single-crystal X-ray diffraction data. The anion lattice exhibits a rare ordering of oxide and chloride ions: one-dimensional zig-zag ladders of chlorine (squarelike motif) are surrounded by an oxygen matrix. Two different iron sites coordinated solely to oxygen are present in the structure, one octahedral and one square pyramidal, both distorted. Similarly, two different strontium coordinations are present; the first homoleptic coordinated to eight oxygen atoms and the second heteroleptic coordinated to four oxygen and four chlorine atoms in a fac-like manner. The lone pair of Te(IV) is directed toward the larger chlorine atoms. Magnetic susceptibility measurements confirm that Fe is +3 (d5) in the high-spin electronic configuration, exhibiting an almost ideal spin-only moment, µeff = 5.65 µB Fe-1. The slightly negative Weiss constant (θCW = -39 K) suggests dominating antiparallel spin-to-spin coupling in the paramagnetic temperature range, agreeing with an observed long-range antiferromagnetic spin ordering below Néel temperature, TN ∼ 13 K, and a broad second order-like anomaly in the specific heat measurement data. Low-temperature neutron diffraction data reveal that the antiferromagnetic ordered phase is C-type, with a k-vector (1/2, 1/2, 0) and ordered moment of 4.14(7) µB. The spin structure can be described as antiferromagnetic ordered layers stacked along the a-axis, forming layers of squares that alternate along the c-axis.

5.
Inorg Chem ; 62(31): 12548-12556, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37487201

ABSTRACT

A new quaternary sulfide telluride, Ba6Fe2Te3S7, was synthesized by a solid-state reaction, and its crystal structure is novel. X-ray diffraction data on powder and single crystals reveal an orthorhombic lattice with a = 9.7543(3) Å, b = 18.2766(6) Å, and c = 12.0549(4) Å, and the noncentrosymmetric space group Cmc21 (No. 36). The properties of the compound were studied by magnetic susceptibility investigations, specific heat measurements, Mössbauer spectroscopy, and density functional theory calculations. Assuming Ba2+ and, as verified by the Mössbauer spectra, Fe3+, the charge balance requires the presence of a polytelluride, suggested to be a straight-chain [Te34-] polyanion. Further, the crystal structure contains [Fe2S7]8- dimers of two vertex-sharing tetrahedra, with a nearly linear Fe-S-Fe atom arrangement. The dimer exhibits antiferromagnetic coupling, with a coupling constant J = -10.5 meV (H = -2JS1S2) and S = 5/2, resulting in a spin singlet ground state. The interdimer magnetic interaction is so weak that the magnetic dimers can be treated as individuals.

6.
ACS Omega ; 8(15): 14233-14239, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37091428

ABSTRACT

The mixed-anion compound with composition Sr2VO3Cl has been synthesized for the first time, using the conventional high-temperature solid-state synthesis technique in a closed silica ampule under inert conditions. This compound belongs to the known Sr2 TmO3Cl (Tm = Sc, Mn, Fe, Co, Ni) family, but with Tm = V. All homologues within this family can be described with the tetragonal space group P4/nmm (No. 129); from a Rietveld refinement of powder X-ray diffraction data on the Tm = V homologue, the unit cell parameters were determined to a = 3.95974(8) and c = 14.0660(4) Å, and the atomic parameters in the crystal structure could be estimated. The synthesized powder is black, implying that the compound is a semiconductor. The magnetic investigations suggest that Sr2VO3Cl is a paramagnet at high temperatures, exhibiting a µeff = 2.0 µB V-1 and antiferromagnetic (AFM) interactions between the magnetic vanadium spins (θCW = -50 K), in line with the V-O-V advantageous super-exchange paths in the V-O layers. Specific heat capacity studies indicate two small anomalies around 5 and 35 K, which however are not associated with long-range magnetic ordering. 35Cl ss-NMR investigations suggest a slow spin freezing below 4.2 K resulting in a glassy-like spin ground state.

8.
RSC Adv ; 12(49): 31830-31845, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36380928

ABSTRACT

Site-specific delivery using functionalized nanocarriers is in high demand in imaging applications of modern clinical research. To improve the imaging capabilities of conventionally used contrast agents and expand the targeting accuracy, functional gadolinium oxide based nanocarriers originated from homogeneous core shells structures (Gd2O3@SiO2@Fe3O4) were developed using a multilayer formation approach. The synthesis and chemical configuration for the covalent binding of macrocyclic chelating agents and estrogen targeting molecules on these nanocarriers were designed by a two-step chemical synthesis method. Initially, SiO2@Fe3O4 structures were prepared and encapsulated with a homogenous thin Gd2O3 overlayer. The exterior surface of the as-prepared carriers offered chemical binding with a breast cancer specific estrogen molecule, covalently grafted through a Click-Chemistry protocol. In the next step, to enhance the diagnostic imaging capabilities of these carriers, thiocyanate-linked chelator molecule, DOTA, was attached to the surface of estrogen bound Gd2O3@SiO2@Fe3O4 using basic reaction conditions. The active amino groups before and after conjugation of estrogen molecules on the surface were quantified using a fluorescamine based approach. Due to the covalent binding of the macrocyclic chelator to the Gd2O3@SiO2@Fe3O4 surface, core shell carriers showed potential radiolabeling efficiency using positron emitter radionuclide, gallium-68 (68Ga). Intracellular uptake of estrogen-conjugated carriers was evaluated with MCF7 breast cancer cell lines using confocal laser scanning microscopy and fluorescent flow cytometry. In addition, in vitro cytotoxicity studies of functional nanocarriers as compared to bare nanoparticles showed reduced toxicity to HEK-293 cells demonstrating the role of surface attached molecules in preventing direct exposure of the Gd2O3 surface to the cells. The as-developed gadolinium based nanocarriers presented excellent capabilities as biocompatible target-specific imaging probes which indicates great potential in the field of dual-mode contrast agents.

9.
Sci Adv ; 8(46): eadd9320, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36383662

ABSTRACT

Open framework materials such as zeolites and metalorganic frameworks are garnering tremendous interest because of their intriguing architecture and attractive functionalities. Thus, new types of open framework materials are highly sought after. Here, we present the discovery of completely new inorganic framework materials, where, in contrast to conventional inorganic open frameworks, the scaffold is not based on tetrahedral EO4 (E = main group element) but octahedral MO6 (M = transition metal) building blocks. These structural features place them closer to polyoxometalates than zeolites. The first representatives of this class of materials are [(R)24(NH4)14(PO(OH)2)6]·[M134(PO3(OH,F))96F120] (M = Co, R = C2Py = 1-ethylpyridinium and M = Ni, R = C4C1Py = 1-butyl-3-methylpyridinium) featuring interlinked fullerene-like nanosphere cavities. Having a transition metal building up the framework brings about interesting properties, for example, spin-glass behavior, and, with this particular topology, a hedgehog-like spin orientation.

10.
Inorg Chem ; 59(21): 15626-15635, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33047957

ABSTRACT

A series of solid solutions (Li2Fe1-yMny)SO with a cubic antiperovskite structure was successfully synthesized. The composition (Li2Fe0.5Mn0.5)SO was intensively studied as a cathode in Li-ion batteries showing a reversible specific capacity of 120 mA h g-1 and almost a 100% Coulombic efficiency after 50 cycles at 0.1C meaning extraction/insertion of 1 Li per formula unit during 10 h. Operando X-ray absorption spectroscopy confirmed the redox activity of both Fe2+ and Mn2+ cations during battery charge and discharge, while operando synchrotron X-ray diffraction studies revealed a reversible formation of a second isostructural phase upon Li-removal and insertion at least for the first several cycles. In comparison to (Li2Fe)SO, the presence of Mn stabilizes the crystal structure of (Li2Fe0.5Mn0.5)SO during battery operation, although post mortem TEM studies confirmed a gradual amorphization after 50 cycles. A lower specific capacity of (Li2Fe0.5Mn0.5)SO in comparison to (Li2Fe)SO is probably caused by slower kinetics, especially in the two-phase region, as confirmed by Li-diffusion coefficient measurements.

11.
J Chem Phys ; 153(10): 104501, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32933281

ABSTRACT

A new ionothermal synthesis utilizing 1-alkyl-pyridinium hexafluorophosphates [CxPy][PF6] (x = 2, 4, 6) led to the formation of highly crystalline single-phase ammonium cobalt trifluoride, (NH4)CoF3. Although ammonium transition-metal fluorides have been extensively studied with respect to their structural and magnetic properties, multiple aspects remain unclear. For that reason, the obtained (NH4)CoF3 has been investigated over a broad temperature range by means of single-crystal and powder x-ray diffraction as well as magnetization and specific heat measurements. In addition, energy-dispersive x-ray and vibrational spectroscopy as well as thermal analysis measurements were undertaken. (NH4)CoF3 crystallizes in the cubic perovskite structure and undergoes a structural distortion to a tetragonal phase at 127.7 K, which also is observable in the magnetic susceptibility measurements, which has not been observed before. A second magnetic phase transition occurring at 116.9 K is of second-order character. The bifurcation of the susceptibility curves indicates a canted antiferromagnetic ordering. At 2.5 K, susceptibility measurements point to a third phase change for (NH4)CoF3.

12.
Inorg Chem ; 58(21): 14728-14733, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31618005

ABSTRACT

When CsCl, BaS, BaO, V, and S are reacted in a solid-state reaction under inert conditions, pure powders and single crystals of senary CsBa6V4S12ClO4 can be obtained. Its unique crystal structure has the symmetry R3̅H (no. 148) and unit cell parameters a = 9.0575(2) and c = 28.339(1) Å. The crystal structure contains polar units [VS3O]3- and a complex BaS7ClO2 coordination. The compound gets its deep-red color from a low-energy charge transfer, which can be explained by an electron transfer from S2- to V5+. In the near-infrared range, down-converted fluorescence occurs at 1.06 and 0.90 eV, and both emissions appear <450 ps after excitation at about 1.27 eV.

13.
Inorg Chem ; 58(19): 13203-13212, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31539232

ABSTRACT

A set of different open framework iron phosphates have been synthesized ionothermally using a task-specific ionic liquid, 1-butyl-4-methylpyridinium hexafluorophosphate, that acts in the synthesis as the reaction medium and mineralizer: (NH4)2Fe2(HPO4)(PO4)Cl2F (1) and K2Fe2(HPO4)(PO4)Cl2F (2) exhibit similar composition and closely related structural features. Both structures consist of {Fe2(HPO4)(PO4)Cl2F}2- macroanions and charge balancing ammonium or potassium cations. Their open framework structure contains layers and chains of corner-linked {Fe(1)O2Cl4} and {Fe(2)F2O4} octahedra, respectively, interconnected by PO4 tetrahedra forming 10-ring channels. KFe(PO3F)F2 (3) is built up by {Fe[(PO3F)4/3F2/2]}{Fe(PO3F)2/3F2/2F2} layers separated by K+ cations. Chains of alternating {FeF2O4} and {FeO2F4} octahedra, which are linear for 1 but undulated for 2, are linked to each other via corner-sharing {PO3F} tetrahedra with the fluorine pointing into the interlayer space. The compounds were characterized by means of single crystal and powder X-ray diffraction, infrared spectroscopy, and magnetic measurements. 1 reveals a strong ground state spin anisotropy with a spin 5/2 state and a magnetic moment of 5.3 µB/Fe3+. Specific heat and magnetic data unveil three magnetic transitions at 95, 50, and 3.6 K. Compound 2 has a very similar crystal structure as compared to 1 but exhibits a different magnetic behavior: a slightly lower magnetic moment of 4.7 µB/Fe3+ and a magnetic transition to a canted antiferromagnetic state below 90 K. Compound 3 exhibits typical paramagnetic behavior close to room-temperature (5.71 µB/Fe3+). There are no clear indications for a phase transition down to 2 K despite strong antiferromagnetic spin-spin interactions; only a magnetic anomaly appears at 50 K in the zero-field cooled data.

14.
Inorg Chem ; 58(18): 11978-11982, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31247813

ABSTRACT

To develop an understanding of the magnetism on one-dimensional lattices, one of the great challenges is to identify novel model systems with enough chemical flexibility to design the magnetic interactions in measurable samples. To contribute to this endeavor, we present a number of bichalcogenides with similar trigonal packing of magnetic chains. These chains consist of 3d transition-metal (TM) ions that are 6-fold-coordinated by S or Se. Each TM coordination can be described as a trigonally distorted octahedron that shares faces with two neighboring octahedra. A unique ability with these model systems is that an entity with electric polarity can be introduced between the chains that causes the TM ions in the chains to shift to polar positions, thereby allowing for magnetoelectric coupling. By a comparison of the macroscopic data of polar and nonpolar chains with either S = 1 or S = 3/2, it is obvious that the magnetic properties are affected by the indirect electric polarity from the entity between the chains.

15.
Inorg Chem ; 57(21): 13296-13299, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30335999

ABSTRACT

Novel bichalcogenides with the general composition (Li2TM)ChO (TM = Mn, Co; Ch = S, Se) were synthesized by single-step solid-state reactions. These compounds possess cubic anti-perovskite crystal structure with Pm3̅ m symmetry; TM and Li are disordered on the crystallographic site 3c. According to Goldschmidt tolerance factor calculations, the available space at the 3c site is too large for Li+ and TM2+ ions. As cathode materials, all title compounds perform less prominent in lithium-ion battery setups in comparison to the already known TM = Fe homologue; e.g., (Li2Co)SO has a charge density of about 70 mAh g-1 at a low charge rate. Nevertheless, the title compounds extend the chemical flexibility of the anti-perovskites, revealing their outstanding chemical optimization potential as lithium battery cathode material.

16.
Nanoscale ; 10(40): 19014-19022, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30265265

ABSTRACT

The 2D layered honeycomb magnet α-ruthenium(iii) chloride (α-RuCl3) is a promising candidate to realize a Kitaev spin model. As alteration of physical properties on the nanoscale is additionally intended, new synthesis approaches to obtain phase pure α-RuCl3 nanocrystals have been audited. Thermodynamic simulations of occurring gas phase equilibria were performed and optimization of synthesis conditions was achieved based on calculation results. Crystal growth succeeded via chemical vapor transport (CVT) in a temperature gradient of 973 K to 773 K on YSZ substrates. Single crystal sheets of high crystallinity with heights ≤30 nm were obtained via pure CVT. The crystal properties were characterized by means of optical and electron microscopy, AFM, SAED, micro-Raman and XPS proving their composition, morphology, crystallinity and phase-purity. A highlight of our study is the successful individualization of nanocrystals and the delamination of nanosheets on YSZ substrates down to the monolayer limit (≤1 nm) which was realized by means of substrate exfoliation and ultrasonication in a very reproducible way.

17.
Inorg Chem ; 57(12): 7201-7207, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29808682

ABSTRACT

Two novel compounds, LiCu Ch ( Ch = Se or Te), were synthesized by direct reaction between elements in closed ampules inside corundum crucibles. Both compounds are highly air-sensitive and possess an anti-PbClF crystal structure, which contains Cu Ch layer analogues to the Fe[As/Se] layers in Fe-based superconductors. In electrochemical battery cells, Li can be almost completely extracted from LiCuSe, but the reverse reaction is only partly successful and Li2Se and Cu2- xSe are formed instead. LiCuSe exhibits a temperature independent and slightly positive magnetic susceptibility. From 7Li NMR measurements, the activation energy of the Li ion diffusion process is about 0.5 eV but is slightly lower for LiCuTe as compared to LiCuSe. Also, the small and almost temperature independent NMR shifts of the 7Li nucleus indicate the absence of Pauli paramagnetism in these compounds, consistent with a 3 d10 full valence state of the Cu ions.

18.
Inorg Chem ; 56(20): 12606-12614, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-28972740

ABSTRACT

Small single crystals of Sr2Fe3Ch2O3 (Ch = S, Se) have been synthesized by flux methods, and bulk materials have been obtained by solid state reactions. Both compounds are isostructural to the compound Sr2Co3S2O3 (space group Pbam), which contains a novel hybrid spin ladder: a combination of a 2-leg rectangular ladder and a necklace ladder. The 2-leg ladder acts as a well-defined magnetic entity, while intimate magnetic coupling to the necklace ladder induces three successive phase transitions in the range of 40-120 K in each composition (Ch = S or Se), as revealed by Mössbauer spectroscopy, thermodynamics, and magnetometry. The complex magnetic behaviors can be explained by the unique spin-lattice topology.

19.
J Am Chem Soc ; 139(28): 9645-9649, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28641412

ABSTRACT

Through single-step solid-state reactions, a series of novel bichalcogenides with the general composition (Li2Fe)ChO (Ch = S, Se, Te) are successfully synthesized. (Li2Fe)ChO (Ch = S, Se) possess cubic anti-perovskite crystal structures, where Fe and Li are completely disordered on a common crystallographic site (3c). According to Goldschmidt calculations, Li+ and Fe2+ are too small for their common atomic position and exhibit large thermal displacements in the crystal structure models, implying high cation mobility. Both compounds (Li2Fe)ChO (Ch = S, Se) were tested as cathode materials against graphite anodes (single cells); They perform outstandingly at very high charge rates (270 mA g-1, 80 cycles) and, at a charge rate of 30 mA g-1, exhibit charge capacities of about 120 mA h g-1. Compared to highly optimized Li1-xCoO2 cathode materials, these novel anti-perovskites are easily produced at cost reductions by up to 95% and, yet, possess a relative specific charge capacity of 75%. Moreover, these iron-based anti-perovskites are comparatively friendly to the environment and (Li2Fe)ChO (Ch = S, Se) melt congruently; the latter is advantageous for manufacturing pure materials in large amounts.

20.
Sci Rep ; 7: 43767, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28256576

ABSTRACT

We report on the syntheses and characterizations of single crystalline and polycrystalline Sr2Co3S2O3 with a novel crystal structure type. It contains Co-O 2-leg rectangular ladders and necklace ladders. The two ladders share common legs and construct a hybrid spin ladder. A rare meridional heteroleptic octahedral coordination is found for the Co2+ ions in the 2-leg ladder. Within the necklace ladders, the Co2+ ions are in trans-octahedral coordination. An antiferromagnetic order is observed at TN ~ 267 K, while a broad maximum in magnetic susceptibility is found below TN. This relatively high ordering temperature among Co-based ladder compounds is related to the highly anisotropic mer-coordination of the Co2+ ions. The trans-octahedrally coordinated Co2+ ions, on the other hand, corresponds to the possible short-range magnetic correlations through dimers with an effective . This results in a rare situation that spin ordering and spin dimers coexist down to 2 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...