Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38631900

ABSTRACT

Immunometabolism investigates the intricate relationship between the immune system and cellular metabolism. This study delves into the consequences of mitochondrial frataxin (FXN) depletion, the primary cause of Friedreich's ataxia (FRDA), a debilitating neurodegenerative condition characterized by impaired coordination and muscle control. By using single-cell RNA sequencing, we have identified distinct cellular clusters within the cerebellum of an FRDA mouse model, emphasizing a significant loss in the homeostatic response of microglial cells lacking FXN. Remarkably, these microglia deficient in FXN display heightened reactive responses to inflammatory stimuli. Furthermore, our metabolomic analyses reveal a shift towards glycolysis and itaconate production in these cells. Remarkably, treatment with butyrate counteracts these immunometabolic changes, triggering an antioxidant response via the itaconate-Nrf2-GSH pathways and suppressing the expression of inflammatory genes. Furthermore, we identify Hcar2 (GPR109A) as a mediator involved in restoring the homeostasis of microglia without FXN. Motor function tests conducted on FRDA mice underscore the neuroprotective attributes of butyrate supplementation, enhancing neuromotor performance. In conclusion, our findings elucidate the role of disrupted homeostatic function in cerebellar microglia in the pathogenesis of FRDA. Moreover, they underscore the potential of butyrate to mitigate inflammatory gene expression, correct metabolic imbalances, and improve neuromotor capabilities in FRDA.


Subject(s)
Frataxin , Friedreich Ataxia , Succinates , Animals , Mice , Butyrates , Frataxin/genetics , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Friedreich Ataxia/pathology , Glucose , Microglia/metabolism
2.
Neurotherapeutics ; 21(3): e00346, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493058

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease influenced by genetic, epigenetic, and environmental factors, resulting in dysfunction in cellular and molecular pathways. The limited efficacy of current treatments highlights the need for combination therapies targeting multiple aspects of the disease. Niclosamide, an anthelminthic drug listed as an essential medicine, has been repurposed in clinical trials for different diseases due to its anti-inflammatory and anti-fibrotic properties. Niclosamide can inhibit various molecular pathways (e.g., STAT3, mTOR) that are dysregulated in ALS, suggesting its potential to disrupt these altered mechanisms associated with the pathology. We administered niclosamide intraperitoneally to two transgenic murine models, SOD1-G93A and FUS mice, mimicking key pathological processes of ALS. The treatment was initiated at the onset of symptoms, and we assessed disease progression by neurological scores, rotarod and wire tests, and monitored survival. Furthermore, we investigated cellular and molecular mechanisms affected by niclosamide in the spinal cord and muscle of ALS mice. In both models, the administration of niclosamide resulted in a slowdown of disease progression, an increase in survival rates, and an improvement in tissue pathology. This was characterised by reduced gliosis, motor neuron loss, muscle atrophy, and inflammatory pathways. Based on these results, our findings demonstrate that niclosamide can impact multiple pathways involved in ALS. This multi-targeted approach leads to a slowdown in the progression of the disease, positioning niclosamide as a promising candidate for repurposing in the treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Progression , Neuroprotective Agents , Niclosamide , Animals , Mice , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Disease Models, Animal , Inflammation/drug therapy , Mice, Transgenic , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Niclosamide/pharmacology , Niclosamide/therapeutic use , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
3.
Acta Physiol (Oxf) ; 226(3): e13269, 2019 07.
Article in English | MEDLINE | ID: mdl-30834670

ABSTRACT

AIM: Loss of skeletal muscle is one of the main features of cancer cachexia. Vitamin D (VD) deficiency is associated with impairment of muscle mass and performance and is highly prevalent in cachectic patients; therefore, VD supplementation has been proposed to counteract cancer cachexia-associated muscle loss. However, in both cachectic cancer patients and tumour-bearing animals, VD supplementation led to disappointing results, urging the need for a better understanding of VD activity on skeletal muscle. METHODS: Cancer-associated muscle wasting was reproduced in vitro by treating C2C12 myotubes with cancer cell conditioned medium, a combination of TNF-α and IFNγ or IL-6 pro-cachectic cytokines. The biological effects and mechanisms of action of 1,25-dihydroxy VD (1,25 VD) and its precursor 25-hydroxy VD (25 VD) on myotubes were explored. RESULTS: We demonstrated that only 25 VD was able to protect from atrophy by activating Akt signalling, inducing protein synthesis, and stimulating the autophagic flux, while 1,25 VD had an atrophic activity per se, increasing FoxO3 levels, inducing the expression of atrogenes, and blocking the autophagic flux. Furthermore, we showed that the contrasting activities of these VD metabolites on C2C12 myotubes depend on a differential induction of VD-24-hydroxylase and transformation of VD metabolites in pro-atrophic 24-hydroxylated products, as silencing of VD-24-hydroxylase reduced the atrophic activity of 1,25 VD. CONCLUSIONS: Altogether these data might explain the lack of efficacy of VD treatment in vivo for the protection of muscle mass in cancer.


Subject(s)
Cachexia/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Vitamin D/analogs & derivatives , Cell Line, Tumor , Culture Media, Conditioned , Cytokines/metabolism , Humans , Vitamin D/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...