Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Int Endod J ; 57(7): 787-803, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38340038

ABSTRACT

BACKGROUND: 'Periodontitis' refers to periodontal destruction of connective tissue attachment and bone, in response to microorganisms forming subgingival biofilms on the root surface, while 'apical periodontitis' refers to periapical inflammatory processes occurring in response to microorganisms within the root canal system. The treatment of both diseases is based on the elimination of the bacterial challenge, though its predictability depends on the ability of disrupting these biofilms, what may need adjunctive antibacterial strategies, such as the next-generation antibacterial strategies (NGAS). From all the newly developed NGAS, the use of polymeric nanotechnology may pose a potential effective approach. Although some of these strategies have only been tested in vitro and in preclinical in vivo models, their use holds a great potential, and therefore, it is relevant to understand their mechanism of action and evaluate their scientific evidence of efficacy. OBJECTIVES: To explore NGAS based on polymeric nanotechnology used for the potential treatment of periodontitis and apical periodontitis. METHOD: A systemic search of scientific publications of adjunctive antimicrobial strategies using nanopolymers to treat periodontal and periapical diseases was conducted using The National Library of Medicine (MEDLINE by PubMed), The Cochrane Oral Health Group Trials Register, EMBASE and Web of Science. RESULTS: Different polymeric nanoparticles, nanofibres and nanostructured hydrogels combined with antimicrobial substances have been identified in the periodontal literature, being the most commonly used nanopolymers of polycaprolactone, poly(lactic-co-glycolic acid) and chitosan. As antimicrobials, the most frequently used have been antibiotics, though other antimicrobial substances, such as metallic ions, peptides and naturally derived products, have also been added to the nanopolymers. CONCLUSION: Polymeric nanomaterials containing antimicrobial compounds may be considered as a potential NGAS. Its relative efficacy, however, is not well understood since most of the existing evidence is derived from in vitro or preclinical in vivo studies.


Subject(s)
Anti-Bacterial Agents , Nanoparticles , Periodontitis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Periodontitis/drug therapy , Periodontitis/microbiology , Biofilms/drug effects , Polymers , Periapical Periodontitis/microbiology , Periapical Periodontitis/therapy , Periapical Periodontitis/drug therapy , Nanotechnology
2.
Polymers (Basel) ; 15(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37050340

ABSTRACT

The main target of bone tissue engineering is to design biomaterials that support bone regeneration and vascularization. Nanostructured membranes of (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5% wt of SiO2-nanoparticles (Si-M) were doped with zinc (Zn-Si-M) or doxycycline (Dox-Si-M). Critical bone defects were effectuated on six New Zealand-bred rabbit skulls and then they were covered with the membranes. After six weeks, a histological analysis (toluidine blue technique) was employed to determine bone cell population as osteoblasts, osteoclasts, osteocytes, M1 and M2 macrophages and vasculature. Membranes covering the bone defect determined a higher count of bone cells and blood vessels than in the sham group at the top regions of the defect. Pro-inflammatory M1 appeared in a higher number in the top regions than in the bottom regions, when Si-M and Dox-Si-M were used. Samples treated with Dox-Si-M showed a higher amount of anti-inflammatory and pro-regenerative M2 macrophages. The M1/M2 ratio obtained its lowest value in the absence of membranes. On the top regions, osteoblasts were more abundant when using Si-M and Zn-Si-M. Osteoclasts were equally distributed at the central and lateral regions. The sham group and samples treated with Zn-Si-M attained a higher number of osteocytes at the top regions. A preferential osteoconductive, osteoinductive and angiogenic clinical environment was created in the vicinity of the membrane placed on critical bone defects.

3.
Clin Oral Investig ; 27(7): 3499-3508, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36977760

ABSTRACT

BACKGROUND AND OBJECTIVE: Primary stability (PS) is remarkable for secondary stability and implant success. Surgical technique modifications seem to improve primary stability, especially in poor quality bone. The aim of this study was to compare the insertion torque (IT) and implant stability quotients (ISQ) of implants placed with underpreparation, expanders, and standard surgical instrumentation in different bone types. MATERIAL AND METHODS: This randomized controlled clinical trial enrolled 108 patients (n=108 implants) distributed in three study groups: group 1 (n=36) underpreparation technique, group 2 (n=36) expander technique, and group 3 (n=36) conventional drilling. IT was recorded with a torque indicator. ISQ was recorded with resonance frequency analysis immediately after surgery. RESULTS: ISQ values were associated with the patient's bone quality and were higher in bone quality type II (76.65) and type III (73.60) and lower in bone quality type IV (67.34), with statistically significant differences (p<0.0001). Lower stability results were obtained when conventional drilling (69.31) was used compared to the use of underpreparation (74.29) or expanders (73.99) with a level of significance of p=0.008 and p=0.005, respectively. CONCLUSIONS: The surgical technique influences the PS when there is low-quality bone. In low-quality bones, conventional drilling obtains lower ISQ values. CLINICAL RELEVANCE: Replace the conventional drilling technique for an alternative, underpreparation or expanders, in low-quality bone in order to achieve greater primary stability.


Subject(s)
Dental Implantation, Endosseous , Dental Implants , Humans , Dental Implantation, Endosseous/methods , Maxilla/surgery , Resonance Frequency Analysis , Osteotomy , Torque
4.
Polymers (Basel) ; 16(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38201760

ABSTRACT

Both guided bone and guided tissue regeneration are techniques that require the use of barrier membranes. Contamination and infection of the surgical area is one of the most feared complications. Some current lines of research focus on functionalizing these membranes with different antimicrobial agents. The objective of this study was to carry out a review of the use and antibacterial properties of regeneration membranes doped with antimicrobials such as zinc, silver, chlorhexidine, and lauric acid. The protocol was based on PRISMA recommendations, addressing the PICO question: "Do membranes doped with non-antibiotic antimicrobials have antibacterial activity that can reduce or improve infection compared to membranes not impregnated with said antimicrobial?" Methodological quality was evaluated using the RoBDEMAT tool. A total of 329 articles were found, of which 25 met the eligibility criteria and were included in this review. Most studies agree that zinc inhibits bacterial growth as it decreases colony-forming units, depending on the concentration used and the bacterial species studied. Silver compounds also decreased the secretion of proinflammatory cytokines and presented less bacterial adhesion to the membrane. Some concentrations of chlorhexidine that possess antimicrobial activity have shown high toxicity. Finally, lauric acid shows inhibition of bacterial growth measured by the disk diffusion test, the inhibition zone being larger with higher concentrations. Antimicrobial agents such as zinc, silver, chlorhexidine, and lauric acid have effective antibacterial activity and can be used to dope regenerative membranes in order to reduce the risk of bacterial colonization.

5.
Clin Oral Investig ; 26(11): 6681-6698, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36070150

ABSTRACT

BACKGROUND: Short implants are proposed as a less invasive alternative with fewer complications than standard implants in combination with sinus lift. The aim of this systematic review and meta-analysis was to state the efficacy of placing short implants (≤ 6 mm) compared to standard-length implants (≥ 8 mm) performing sinus lift techniques in patients with edentulous posterior atrophic jaws. Efficacy will be evaluated through analyzing implant survival (IS) and maintenance of peri-implant bone (MBL). METHODS: Screening process was done using the National Library of Medicine (MEDLINE by PubMed), EMBASE, the Cochrane Oral Health, and Web of Science (WOS). The articles included were randomized controlled trials. Risk of bias was evaluated according to The Cochrane Collaboration's tool. Weighted means were calculated. Heterogeneity was determined using Higgins (I2). A random-effects model was applied. Secondary outcomes such as surgical time, patient satisfaction, mucositis and peri-implantitis, pain, and swelling were analyzed. RESULTS: Fourteen studies (597 patients and 901 implants) were evaluated. IS was 1.02 risk ratio, ranging from 1.00 to 1.05 (CI 95%) (p = 0.09), suggesting that IS was similar when both techniques were used. MBL was higher in patients with standard-length implants plus sinus lift elevation (p = 0.03). MBL was 0.11 (0.01-0.20) mm (p = 0.03) and 0.23 (0.07-0.39) mm (p = 0.005) before and after 1 year of follow-up, respectively, indicating that the marginal bone loss is greater for standard-length implants. DISCUSSION: Within the limitations of the present study, as relatively small sample size, short dental implants can be used as an alternative to standard-length implants plus sinus elevation in cases of atrophic posterior maxilla. Higher MBL was observed in the groups where standard-length implants were used, but implant survival was similar in both groups. Moreover, with short implants, it was observed a reduced postoperative discomfort, minimal invasiveness, shorter treatment time, and reduced costs. CLINICAL CLINICAL RELEVANCE: The low MBL promoted by short implants does contribute to a paradigm shift from sinus grafting with long implants to short implants. Further high-quality long-term studies are required to confirm these findings.


Subject(s)
Dental Implants , Sinus Floor Augmentation , Humans , Dental Prosthesis Design , Maxilla/surgery , Dental Implantation, Endosseous/methods , Sinus Floor Augmentation/methods , Dental Restoration Failure
6.
Clin Oral Investig ; 26(11): 6521-6530, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35804172

ABSTRACT

OBJECTIVE: Resonance frequency analysis (RFA) provides an evaluation of implant stability over time. This analysis is a non-invasive, precise, and objective method. Several studies compare the RFA system with other devices. However, few investigations analyze repeatability and reproducibility between different operators. The aim of this study was to evaluate the intra- and inter-operator concordance of the Osstell® ISQ. MATERIAL AND METHODS: RFA measurements were performed with Osstell® ISQ in a total of 37 implants placed in 21 patients. At the time of implant placement, 6 measurements per implant were taken by three different experienced operators. Three measurements were carried out consecutively and three by removing and placing the SmartPeg-Osstell® to assess intra-operator and inter-operator agreement. RESULTS: Intra-operator concordance according to the intraclass correlation coefficient (ICC) showed high concordance. The ICC values were higher than 0.9 (p < 0.0001) for consecutive measures and alternative measures, being almost perfect of Landis & Koch classification. For inter-operator concordance The ICC was 0.709 (p < 0.0001) and 0.670 (p < 0.0001) for consecutive and alternative measures, respectively, both estimates being in the substantial category. In torque and ISQ values, no statistically significant differences were observed when operators and measurements were compared. CONCLUSIONS: Osstell® ISQ system was stable both in intra-operator and inter-operator measurements. This device has excellent repeatability and reproducibility, demonstrating reliability to measure the stability of dental implants. CLINICAL RELEVANCE: Resonance frequency analysis (RFA) is a non-invasive, objective, and reliable diagnostic method to determine the ideal moment to load the implant, as well as to predict possible failures.


Subject(s)
Dental Implants , Dental Prosthesis Retention , Humans , Resonance Frequency Analysis , Reproducibility of Results , Prospective Studies , Cross-Sectional Studies , Vibration , Dental Implantation, Endosseous , Osseointegration
7.
Article in English | MEDLINE | ID: mdl-35682086

ABSTRACT

Research has been conducted into the advantages of the systemic administration of antibiotics. The aim of this systematic review and meta-analysis was to assess the efficacy of systemic antibiotic administration in the treatment of peri-implantitis in terms of bleeding on probing (BoP) and probing pocket depth (PPD). Literature searches were performed across PubMed, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL) to identify randomized controlled trials and observational clinical studies. After peri-implantitis treatment, PPD was reduced by 0.1 mm (p = 0.58; IC 95% [-0.24, 0.47]), indicating a non-significant effect of antibiotic administration on PPD. The BoP odds ratio value was 1.15 (p = 0.5; IC 95% [0.75, 1.75]), indicating that the likelihood of bleeding is almost similar between the test and control groups. Secondary outcomes were found, such as reduced clinical attachment level, lower suppuration and recession, less bone loss, and a reduction in total bacterial counts. In the treatment of peri-implantitis, the systemic antibiotic application reduces neither PPD nor BoP. Therefore, the systemic administration of antibiotics, in the case of peri-implantitis, should be rethought in light of the present results, contributing to address the problem of increasing antibiotic resistance.


Subject(s)
Peri-Implantitis , Humans , Anti-Bacterial Agents/therapeutic use , Bacterial Load , Peri-Implantitis/drug therapy , Treatment Outcome
8.
Polymers (Basel) ; 14(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35631960

ABSTRACT

Our objective is to evaluate the regional regenerative potential of calvarial bone in critical-sized defects in a rabbit model using novel nanostructured silica-loaded membranes doped with zinc or doxycycline. Nanostructured membranes of (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5 wt% of SiO2 nanoparticles (HOOC-Si-Membranes) were doped with zinc (Zn-HOOC-Si-Membrane) or doxycycline (Dox-HOOC-Si-Membrane). Critical bone defects were created on six New-Zealand-breed rabbit skulls and covered with the membranes. A sham defect without a membrane was used as the control. After six weeks, a histological analysis (toluidine blue technique) was employed to determine the area percentages of newly formed bone, osteoid bone, and soft tissue. The measurements were performed by dividing the total defect area into top (close to the membrane) and bottom (close to the dura mater) regions, or peripheral (adjacent to the old bone) and central (the sum of the remaining zones) regions. The peripheral regions of the defects showed higher osteogenic capacity than the central areas when the membranes were present. The proportion of new bone adjacent to the dura was similar to that adjacent to the membrane only when the HOOC-Si-Membranes and Zn-HOOC-Si-Membranes were used, indicating a direct osteoinductive effect of the membranes.

9.
Polymers (Basel) ; 14(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35406326

ABSTRACT

Gingival recessions are a prevalent oral mucosa alteration. To solve this pathology, palatal mucosa or polymeric soft tissue substitutes are used when performing coronal advanced flap (CAF) or tunnel (TUN) surgical techniques. To evaluate which is the most successful approach, a literature review and meta-analysis were conducted. For the electronic search the National Library of Medicine, the Cochrane Oral Health Group Trials Register, EMBASE and WOS were used. Pooled data for the percentage of root coverage was collected and weighted means were calculated. Heterogeneity was determined using the Higgins (I2) statistic and a random-effects model was applied. Thirteen studies were included in the systematic review (12 randomized and 1 controlled clinical trials) in which both techniques (394 patients) were compared with a follow-up of 4 to 12 months. Galbraith and Baujat plots were used to control for the presence of potential outliers. After performing the meta-analysis (11 studies), the mean root coverage was similar when using the TUN or CAF techniques (p = 0.49). The only differences between the two were found for single recessions, where CAF offered a higher percentage of root coverage (mean difference = 4.98%; p = 0.006). There were no differences when applying an autograft or a polymeric substitute with either of the two tested surgical techniques (p = 0.445).

10.
Polymers (Basel) ; 14(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35215754

ABSTRACT

Polymeric membranes are frequently used for bone regeneration in oral and periodontal surgery. Polymers provide adequate mechanical properties (i.e., Young's modulus) to support oral function and also pose some porosity with interconnectivity to permit for cell proliferation and migration. Bacterial contamination of the membrane is an event that may lead to infection at the bone site, hindering the clinical outcomes of the regeneration procedure. Therefore, polymeric membranes have been proposed as carriers for local antibiotic therapy. A literature search was performed for papers, including peer-reviewed publications. Among the different membranes, collagen is the most employed biomaterial. Collagen membranes and expanded polytetrafluoroethylene loaded with tetracyclines, and polycaprolactone with metronidazole are the combinations that have been assayed the most. Antibiotic liberation is produced in two phases. A first burst release is sometimes followed by a sustained liberation lasting from 7 to 28 days. All tested combinations of membranes and antibiotics provoke an antibacterial effect, but most of the time, they were measured against single bacteria cultures and usually non-specific pathogenic bacteria were employed, limiting the clinical relevance of the attained results. The majority of the studies on animal models state a beneficial effect of these antibiotic functionalized membranes, but human clinical assays are scarce and controversial.

11.
J Evid Based Dent Pract ; 21(4): 101618, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34922724

ABSTRACT

OBJECTIVE: Impacted third molar extraction is associated with acute moderate-to-severe pain for up to 48 hours post-surgery. This trial was designed to compare the analgesic effectiveness, swelling, and adverse events after impacted third molar surgery following multimodal therapy with 75 mg tramadol hydrochloride plus 25 mg dexketoprofen or monotherapy with 400 mg ibuprofen. METHODS: Seventy-two patients were randomly assigned to receiving ibuprofen (n = 36) or tramadol-dexketoprofen (n = 36). Postoperative pain intensity and swelling were measured using a visual analog scale (VAS); pain relief experienced was reported using a 4-point verbal rating scale; the rescue medication requirement, adverse effects, and global impression of the medication were recorded. RESULTS: No statistically significant between-group difference in pain intensity was observed at any time point; however, pain relief was significantly higher in the tramadol-dexketoprofen treated-group at 6 and 36 hours. Self-reported verbal rating scale assessments showed significantly lower swelling in the tramadol-dexketoprofen group at 24 hours post-surgery but not at 48 or 72 hours, and VAS-swelling scores showed no significant between-group difference. The frequency of postoperative nausea and dizziness was significantly higher in the tramadol-dexketoprofen group. CONCLUSIONS: Multimodal therapy proved more effective to manage moderate-severe pain after impacted third molar surgery in comparison to monotherapy. However, the improvement in relief must be balanced against the increased risk of adverse effects when considering this multimodal approach.


Subject(s)
Tramadol , Analgesics , Double-Blind Method , Drug Combinations , Humans , Ibuprofen/therapeutic use , Ketoprofen/analogs & derivatives , Molar, Third/surgery , Pain, Postoperative/drug therapy , Tooth Extraction , Tramadol/therapeutic use , Tromethamine
12.
Polymers (Basel) ; 13(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34503047

ABSTRACT

Collagen membranes are currently the most widely used membranes for guided bone regeneration; however, their rapid degradation kinetics means that the barrier function may not remain for enough time to permit tissue regeneration to happen. The origin of collagen may have an important effect on the resistance to degradation. The aim of this study was to investigate the biodegradation pattern of five collagen membranes from different origins: Biocollagen, Heart, Evolution X-fine, CopiOs and Parasorb Resodont. Membranes samples were submitted to different degradation tests: (1) hydrolytic degradation in phosphate buffer saline solution, (2) bacterial collagenase from Clostridium histolyticum solution, and (3) enzyme resistance using a 0.25% porcine trypsin solution. Immersion periods from 1 up to 50 days were performed. At each time point, thickness and weight measurements were performed with a digital caliper and an analytic microbalance, respectively. ANOVA and Student-Newman-Keuls tests were used for comparisons (p < 0.05). Differences between time-points within the same membranes and solutions were assessed by pair-wise comparisons (p < 0.001). The Evolution X-fine collagen membrane from porcine pericardium attained the highest resistance to all of the degradation tests. Biocollagen and Parasorb Resodont, both from equine origin, experienced the greatest degradation when immersed in PBS, trypsin and C. histolyticum during challenge tests. The bacterial collagenase solution was shown to be the most aggressive testing method.

13.
Polymers (Basel) ; 13(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34451173

ABSTRACT

Collagen matrices have become a great alternative to the use of connective tissue grafts for soft tissue augmentation procedures. One of the main problems with these matrices is their volume instability and rapid degradation. This study has been designed with the objective of examining the degradation of three matrices over time. For this purpose, pieces of 10 × 10 mm2 of Fibro-Gide, Mucograft and Mucoderm were submitted to three different degradation tests-(1) hydrolytic degradation in phosphate buffer solution (PBS); (2) enzyme resistance, using a 0.25% porcine trypsin solution; and (3) bacterial collagenase resistance (Clostridium histolyticum)-over different immersion periods of up to 50 days. Weight measurements were performed with an analytic microbalance. Thickness was measured with a digital caliper. A stereomicroscope was used to obtain the matrices' images. ANOVA and Student-Newman-Keuls tests were used for mean comparisons (p < 0.05), except when analyzing differences between time-points within the same matrix and solution, where pair-wise comparisons were applied (p < 0.001). Fibro-Gide attained the highest resistance to all degradation challenges. The bacterial collagenase solution was shown to constitute the most aggressive test as all matrices presented 100% degradation before 14 days of storage.

14.
J Clin Med ; 10(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34362004

ABSTRACT

Implant stability is one of the main indicators of successful osseointegration. Although it has been measured in numerous studies, there has been little research on implant stability in regenerated bone. The study compares primary and secondary stability between implants placed in regenerated versus native bone and evaluates the influence of bone quality on the results. Sixty implants were placed in 31 patients: 30 implants inserted in native bone (non-regenerated) after a healing period of at least 6 months post-exodontia and 30 inserted in regenerated bone at 6 months after grafting with xenograft. Resonance frequency analysis (RFA) was used to obtain implant stability quotient (ISQ) values at baseline (implant placement), 8 weeks, and 12 weeks. Statistically significant differences were found between implants placed in regenerated bone and those placed in native bone at all measurement time points (p < 0.05). ISQ values were significantly influenced by bone quality at baseline (p < 0.05) but not at 8 or 12 weeks. Greater stability was obtained in implants placed in native bone; however, those placed in regenerated bone showed adequate primary and secondary stability for prosthetic loading. Bone quality influences the primary but not secondary stability of the implants in both native and regenerated bone.

15.
Polymers (Basel) ; 13(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072433

ABSTRACT

Barrier membranes are employed in guided bone regeneration (GBR) to facilitate bone in-growth. A bioactive and biomimetic Zn-doped membrane with the ability to participate in bone healing and regeneration is necessary. The aim of the present study is to state the effect of doping the membranes for GBR with zinc compounds in the improvement of bone regeneration. A literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. A narrative exploratory review was undertaken, focusing on the antibacterial effects, physicochemical and biological properties of Zn-loaded membranes. Bioactivity, bone formation and cytotoxicity were analyzed. Microstructure and mechanical properties of these membranes were also determined. Zn-doped membranes have inhibited in vivo and in vitro bacterial colonization. Zn-alloy and Zn-doped membranes attained good biocompatibility and were found to be non-toxic to cells. The Zn-doped matrices showed feasible mechanical properties, such as flexibility, strength, complex modulus and tan delta. Zn incorporation in polymeric membranes provided the highest regenerative efficiency for bone healing in experimental animals, potentiating osteogenesis, angiogenesis, biological activity and a balanced remodeling. Zn-loaded membranes doped with SiO2 nanoparticles have performed as bioactive modulators provoking an M2 macrophage increase and are a potential biomaterial for promoting bone repair. Zn-doped membranes have promoted pro-healing phenotypes.

16.
Polymers (Basel) ; 13(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072698

ABSTRACT

Soft tissues have been shown to be critical for the maintenance of both teeth and implants. Currently, regenerative soft tissue techniques propose the use of collagen matrices, which can avoid the drawbacks derived from the obtainment of autogenous tissue graft. A systematic review and meta-analysis were conducted to ascertain the efficacy of collagen matrices (CM) compared to autogenous connective tissue graft (CTG) to improve soft tissue dimensions. An electronic and manual literature searches were performed to identify randomized clinical trials (RCT) or controlled clinical trials (CCT) that compared CTG and CM. Pooled data of width of keratinized tissue (KT) and mucosal thickness (MT) were collected and weighted means were calculated. Heterogeneity was determined using Higgins (I2). If I2 > 50% a random-effects model was applied. Nineteen studies were included based on the eligibility criteria. When using CTG a higher MT gain (0.32 mm, ranging from 0.49 to 0.16 mm) was obtained than when employing CM. Similar result was obtained for the width of KT gain, that was 0.46 mm higher (ranging from 0.89 to 0.02 mm) when employing CTG. However, it can be stated that, although autogenous CTG achieves higher values, CM are an effective alternative in terms of total width of KT and MT gain.

17.
Polymers (Basel) ; 13(7)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917475

ABSTRACT

Alveolar bone ridge resorption occurred after natural teeth loss and it can restrict the possibility of dental implants placement. The use of bone regenerative procedures is frequently required. The existing evidence regarding the efficacy of horizontal bone ridge augmentation trough guided bone regeneration (GBR) using polymeric membranes was stated. A systematic review and meta-analysis were performed. Electronic and manual literature searches were conducted. Screening process was done using the National Library of Medicine (MEDLINE by PubMed), Embase, and the Cochrane Oral Health. Included articles were randomized controlled trials and observational studies. Weighted means were calculated. Heterogeneity was determined using Higgins (I2). If I2 > 50% a random-effects model was applied. It was found that the mean of horizontal bone gain was 3.95 mm, ranging from 3.19 to 4.70 mm (confidence interval 95%). Heterogeneity is I2 = 99% (confidence interval 95%) and significance of the random-effects model was p < 0.001. The complications rate was 8.4% and membrane exposure was the most frequent. Through this study, we were able to conclude that the existing scientific evidence suggests that GBR using polymeric membranes is a predictable technique for achieving horizontal bone augmentation, thus, permitting a proper further implant placement.

18.
Polymers (Basel) ; 12(8)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824577

ABSTRACT

Most of the polymers used as biomaterials for scaffolds are naturally occurring, synthetic biodegradable, and synthetic non-biodegradable polymers. Since synthetic polymers can be adapted for obtaining singular desired characteristics by applying various fabrication techniques, their use has increased in the biomedical field, in dentistry in particular. The manufacturing methods of these new structures include many processes, such as electrospinning, 3D printing, or the use of computer-aided design/computer-aided manufacturing (CAD/CAM). Synthetic polymers show several drawbacks that can limit their use in clinical applications, such as the lack of cellular recognition, biodegradability, and biocompatibility. Moreover, concerning biodegradable polymers, the time for matrix resorption is not predictable, and non-resorbable matrices are preferred for soft tissue augmentation in the oral cavity. This review aimed to determine a new biomaterial to offset the present shortcomings in the oral environment. Researchers have recently proposed a novel non-resorbable composite membrane manufactured via electrospinning that has allowed obtaining remarkable in vivo outcomes concerning angiogenesis and immunomodulation throughout the polarization of macrophages. A prototype of the protocol for in vitro and in vivo experimentation with hydrogels is explained in order to encourage innovation into the development of promising biomaterials for soft tissue augmentation in the near future.

19.
Polymers (Basel) ; 12(8)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824697

ABSTRACT

Oral soft tissue thickening or grafting procedures are often necessary to cover tooth recession, re-establish an adequate width of keratinized tissue, correct mucogingival deformities improving esthetics, prepare a site for an implant or prosthetics, for ridge preservation procedures, and soft tissue contouring around dental implants. Gingival recession and root or implant exposure are commonly associated and have led to mucogingival deficiencies that have traditionally been treated with free gingival grafts and autogenous soft tissue grafts. The latter represents the gold standard in acquiring a functionally adequate zone of keratinized attached gingiva. However, soft tissue substitutes are more usually employed because they lessen morbidity and abbreviate surgical time. This review is aimed at assessing oral soft tissue augmentation techniques and biomaterials used from existing literature, principally concerning scaffolds from both human and animal-based tissue derivatives matrices. In order to avoid the use of human donor tissue, the xenogenic collagen matrices are proposed for soft tissue augmentation. In general, all of them have provided the remodeling processes and enhanced the formation of new connective tissue within the matrix body.

SELECTION OF CITATIONS
SEARCH DETAIL
...