Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 15(2): 308-352, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36403149

ABSTRACT

Frailty is the hallmark of aging that can be delayed with exercise. The present studies were initiated based on the hypothesis that long-term voluntary wheel running (VWR) in female mice from 12 to 18 or 22 months of age would have beneficial effects on the musculoskeletal system. Mice were separated into high (HBW) and low (LBW) body weight based on final body weights upon termination of experiments. Bone marrow fat was significantly higher in HBW than LBW under sedentary conditions, but not with VWR. HBW was more protective for soleus size and function than LBW under sedentary conditions, however VWR increased soleus size and function regardless of body weight. VWR plus HBW was more protective against muscle loss with aging. Similar effects of VWR plus HBW were observed with the extensor digitorum longus, EDL, however, LBW with VWR was beneficial in improving EDL fatigue resistance in 18 mo mice and was more beneficial with regards to muscle production of bone protective factors. VWR plus HBW maintained bone in aged animals. In summary, HBW had a more beneficial effect on muscle and bone with aging especially in combination with exercise. These effects were independent of bone marrow fat, suggesting that intrinsic musculoskeletal adaptions were responsible for these beneficial effects.


Subject(s)
Motor Activity , Physical Conditioning, Animal , Mice , Female , Animals , Motor Activity/physiology , Body Weight , Muscle, Skeletal , Aging/physiology
2.
Am J Physiol Heart Circ Physiol ; 320(6): H2283-H2294, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33929896

ABSTRACT

Fibroblast growth factor 23 (FGF23) is a phosphate regulating protein hormone released by osteocytes. FGF23 becomes markedly elevated in chronic kidney disease (CKD), for which the leading cause of death is cardiovascular disease, particularly sudden cardiac death. Previously, we found that FGF23 increases intracellular Ca2+ in cardiomyocytes and alters contractility in mouse ventricles ex vivo via FGF receptor 4 (FGFR4). In the present study, we demonstrate that FGF23 induces cardiac arrhythmias and prolongs QTc interval in mice, and we tested whether these effects are mediated through FGFR4. In isolated Langendorff perfused hearts, FGF23 perfusion increased mechanical arrhythmias in the form of premature ventricular beats (PVBs), and induced runs of ventricular tachycardia in 6 of 11 animals, which were attenuated with pretreatment of an anti-FGFR4 blocking antibody. Ex vivo ECG analysis of isolated intact hearts showed increased ventricular arrhythmias and QTc prolongation after FGF23 infusion compared with vehicle. In vivo, injection of FGF23 into the jugular vein led to the emergence of premature ventricular contractions (PVCs) in 5 out of 11 experiments. FGF23 also produced a significant lengthening effect upon QTc interval in vivo. In vivo FGFR4 blockade ameliorated the arrhythmogenic and QTc prolonging effects of FGF23. Finally, FGF23 increased cardiomyocyte Ca2+ levels in intact left ventricular muscle which was inhibited by FGR4 blockade. We conclude that FGF23/FGFR4 signaling in the heart may contribute to ventricular arrhythmogenesis and repolarization disturbances commonly observed in patients with CKD via Ca2+ overload and may be an important therapeutic target to reduce cardiac mortality in CKD.NEW & NOTEWORTHY Here we provide direct evidence that fibroblast growth factor 23 (FGF23), a phosphaturic hormone elevated in chronic kidney disease, is proarrhythmic. FGF23 acutely triggered ventricular arrhythmias and prolonged corrected QT interval (QTc) in isolated mouse hearts and in vivo. FGF23 also increased Ca2+ levels in ventricular muscle tissue. Blockade of the FGF receptor 4 signaling pathway using a monoclonal antibody ameliorated ventricular arrhythmias, QTc prolongation, and elevated ventricular Ca2+ induced by FGF23, and may represent a potential therapeutic target in chronic kidney disease.


Subject(s)
Fibroblast Growth Factors/metabolism , Long QT Syndrome/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Renal Insufficiency, Chronic/metabolism , Tachycardia, Ventricular/metabolism , Ventricular Premature Complexes/metabolism , Animals , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Electrocardiography , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/pharmacology , Heart/drug effects , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Isolated Heart Preparation , Mice , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Signal Transduction
3.
Am J Physiol Heart Circ Physiol ; 318(5): H1272-H1282, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32243768

ABSTRACT

Cardiovascular disease is a major cause of morbidity and mortality among patients with chronic kidney disease (CKD). Trimethylamine-N-oxide (TMAO), a uremic metabolite that is elevated in the setting of CKD, has been implicated as a nontraditional risk factor for cardiovascular disease. While association studies have linked elevated plasma levels of TMAO to adverse cardiovascular outcomes, its direct effect on cardiac and smooth muscle function remains to be fully elucidated. We hypothesized that pathological concentrations of TMAO would acutely increase cardiac and smooth muscle contractility. These effects may ultimately contribute to cardiac dysfunction during CKD. High levels of TMAO significantly increased paced, ex vivo human cardiac muscle biopsy contractility (P < 0.05). Similarly, TMAO augmented contractility in isolated mouse hearts (P < 0.05). Reverse perfusion of TMAO through the coronary arteries via a Langendorff apparatus also enhanced cardiac contractility (P < 0.05). In contrast, the precursor molecule, trimethylamine (TMA), did not alter contractility (P > 0.05). Multiphoton microscopy, used to capture changes in intracellular calcium in paced, adult mouse hearts ex vivo, showed that TMAO significantly increased intracellular calcium fluorescence (P < 0.05). Interestingly, acute administration of TMAO did not have a statistically significant influence on isolated aortic ring contractility (P > 0.05). We conclude that TMAO directly increases the force of cardiac contractility, which corresponds with TMAO-induced increases in intracellular calcium but does not acutely affect vascular smooth muscle or endothelial function of the aorta. It remains to be determined if this acute inotropic action on cardiac muscle is ultimately beneficial or harmful in the setting of CKD.NEW & NOTEWORTHY We demonstrate for the first time that elevated concentrations of TMAO acutely augment myocardial contractile force ex vivo in both murine and human cardiac tissue. To gain mechanistic insight into the processes that led to this potentiation in cardiac contraction, we used two-photon microscopy to evaluate intracellular calcium in ex vivo whole hearts loaded with the calcium indicator dye Fluo-4. Acute treatment with TMAO resulted in increased Fluo-4 fluorescence, indicating that augmented cytosolic calcium plays a role in the effects of TMAO on force production. Lastly, TMAO did not show an effect on aortic smooth muscle contraction or relaxation properties. Our results demonstrate novel, acute, and direct actions of TMAO on cardiac function and help lay the groundwork for future translational studies investigating the complex multiorgan interplay involved in cardiovascular pathogenesis during CKD.


Subject(s)
Heart/drug effects , Methylamines/pharmacology , Myocardial Contraction , Aged , Animals , Aorta/drug effects , Aorta/physiology , Female , Heart/physiology , Humans , Male , Methylamines/toxicity , Mice , Middle Aged , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Rats , Rats, Sprague-Dawley
4.
Am J Physiol Renal Physiol ; 317(2): F343-F360, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31091126

ABSTRACT

Polycystic kidney disease (PKD) is characterized by slowly expanding renal cysts that damage the kidney, typically resulting in renal failure by the fifth decade. The most common cause of death in these patients, however, is cardiovascular disease. Expanding cysts in PKD induce chronic kidney injury that is accompanied by immune cell infiltration, including macrophages, which we and others have shown can promote disease progression in PKD mouse models. Here, we show that monocyte chemoattractant protein-1 [MCP-1/chemokine (C-C motif) ligand 2 (CCL2)] is responsible for the majority of monocyte chemoattractant activity produced by renal PKD cells from both mice and humans. To test whether the absence of MCP-1 lowers renal macrophage concentration and slows disease progression, we generated genetic knockout (KO) of MCP-1 in a mouse model of PKD [congenital polycystic kidney (cpk) mice]. Cpk mice are born with rapidly expanding renal cysts, accompanied by a decline in kidney function and death by postnatal day 21. Here, we report that KO of MCP-1 in these mice increased survival, with some mice living past 3 mo. Surprisingly, however, there was no significant difference in renal macrophage concentration, nor was there improvement in cystic disease or kidney function. Examination of mice revealed cardiac hypertrophy in cpk mice, and measurement of cardiac electrical activity via ECG revealed repolarization abnormalities. MCP-1 KO did not affect the number of cardiac macrophages, nor did it alleviate the cardiac aberrancies. However, MCP-1 KO did prevent the development of pulmonary edema, which occurred in cpk mice, and promoted decreased resting heart rate and increased heart rate variability in both cpk and noncystic mice. These data suggest that in this mouse model of PKD, MCP-1 altered cardiac/pulmonary function and promoted death outside of its role as a macrophage chemoattractant.


Subject(s)
Arrhythmias, Cardiac/metabolism , Cardiomegaly/metabolism , Chemokine CCL2/metabolism , Kidney/metabolism , Lung/metabolism , Myocardium/metabolism , Polycystic Kidney Diseases/metabolism , Pulmonary Edema/metabolism , Animals , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Cells, Cultured , Chemokine CCL2/deficiency , Chemokine CCL2/genetics , Disease Models, Animal , Disease Progression , Fibrosis , Humans , Inflammation Mediators/metabolism , Kidney/pathology , Kidney/physiopathology , Lung/pathology , Lung/physiopathology , Macrophages/metabolism , Macrophages/pathology , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocardium/pathology , Polycystic Kidney Diseases/pathology , Polycystic Kidney Diseases/physiopathology , Pulmonary Edema/pathology , Pulmonary Edema/physiopathology , Pulmonary Edema/prevention & control , Time Factors
5.
Bone Res ; 7: 6, 2019.
Article in English | MEDLINE | ID: mdl-30820362

ABSTRACT

Transgenic mice are widely used to delete or overexpress genes in a cell specific manner to advance knowledge of bone biology, function and disease. While numerous Cre models exist to target gene recombination in osteoblasts and osteoclasts, few target osteocytes specifically, particularly mature osteocytes. Our goal was to create a spatial and temporal conditional Cre model using tamoxifen to induce Cre activity in mature osteocytes using a Bac construct containing the 5' and 3' regions of the Sost gene (Sost ERT2 Cre). Four founder lines were crossed with the Ai9 Cre reporter mice. One founder line showed high and specific activity in mature osteocytes. Bones and organs were imaged and fluorescent signal quantitated. While no activity was observed in 2 day old pups, by 2 months of age some osteocytes were positive as osteocyte Cre activity became spontaneous or 'leaky' with age. The percentage of positive osteocytes increased following tamoxifen injection, especially in males, with 43% to 95% positive cells compared to 19% to 32% in females. No signal was observed in any bone surface cell, bone marrow, nor in muscle with or without tamoxifen injection. No spontaneous signal was observed in any other organ. However, with tamoxifen injection, a few positive cells were observed in kidney, eye, lung, heart and brain. All other organs, 28 in total, were negative with tamoxifen injection. However, with age, a muscle phenotype was apparent in the Sost-ERT2 Cre mice. Therefore, although this mouse model may be useful for targeting gene deletion or expression to mature osteocytes, the muscle phenotype may restrict the use of this model to specific applications and should be considered when interpreting data.

6.
Am J Physiol Endocrinol Metab ; 315(4): E594-E604, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29558205

ABSTRACT

Skeletal muscle dysfunction accompanies the clinical disorders of chronic kidney disease (CKD) and hereditary hypophosphatemic rickets. In both disorders, fibroblast growth factor 23 (FGF23), a bone-derived hormone regulating phosphate and vitamin D metabolism, becomes chronically elevated. FGF23 has been shown to play a direct role in cardiac muscle dysfunction; however, it is unknown whether FGF23 signaling can also directly induce skeletal muscle dysfunction. We found expression of potential FGF23 receptors ( Fgfr1-4) and α-Klotho in muscles of two animal models (CD-1 and Cy/+ rat, a naturally occurring rat model of chronic kidney disease-mineral bone disorder) as well as C2C12 myoblasts and myotubes. C2C12 proliferation, myogenic gene expression, oxidative stress marker 8-OHdG, intracellular Ca2+ ([Ca2+]i), and ex vivo contractility of extensor digitorum longus (EDL) or soleus muscles were assessed after treatment with various amounts of FGF23. FGF23 (2-100 ng/ml) did not alter C2C12 proliferation, expression of myogenic genes, or oxidative stress after 24- to 72-h treatment. Acute or prolonged FGF23 treatment up to 6 days did not alter C2C12 [Ca2+]i handling, nor did acute treatment with FGF23 (9-100 ng/ml) affect EDL and soleus muscle contractility. In conclusion, although skeletal muscles express the receptors involved in FGF23-mediated signaling, in vitro FGF23 treatments failed to directly alter skeletal muscle development or function under the conditions tested. We hypothesize that other endogenous substances may be required to act in concert with FGF23 or apart from FGF23 to promote muscle dysfunction in hereditary hypophosphatemic rickets and CKD.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Fibroblast Growth Factors/pharmacology , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , 8-Hydroxy-2'-Deoxyguanosine , Animals , Calcium/metabolism , Cell Line , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Fibroblast Growth Factor-23 , Gene Expression , Mice , Muscle Development/genetics , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Muscle, Skeletal/metabolism , Myoblasts/drug effects , Myocardial Contraction/drug effects , Oxidative Stress/drug effects , Rats
7.
Cell Rep ; 22(6): 1531-1544, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29425508

ABSTRACT

Exercise has beneficial effects on metabolism and on tissues. The exercise-induced muscle factor ß-aminoisobutyric acid (BAIBA) plays a critical role in the browning of white fat and in insulin resistance. Here we show another function for BAIBA, that of a bone-protective factor that prevents osteocyte cell death induced by reactive oxygen species (ROS). l-BAIBA was as or more protective than estrogen or N-acetyl cysteine, signaling through the Mas-Related G Protein-Coupled Receptor Type D (MRGPRD) to prevent the breakdown of mitochondria due to ROS. BAIBA supplied in drinking water prevented bone loss and loss of muscle function in the murine hindlimb unloading model, a model of osteocyte apoptosis. The protective effect of BAIBA was lost with age, not due to loss of the muscle capacity to produce BAIBA but likely to reduced Mrgprd expression with aging. This has implications for understanding the attenuated effect of exercise on bone with aging.


Subject(s)
Aging/metabolism , Aminoisobutyric Acids/metabolism , Muscle, Skeletal/metabolism , Osteocytes/metabolism , Animals , Female , Hindlimb Suspension , Male , Mice , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...