Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 11(10)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36290676

ABSTRACT

The objective of this study was to investigate the effects of onion and apple functional ingredients in homozygous (fa/fa) obese Zucker rats. Rodents were fed three diets: standard diet [obese control (OC) group], standard diet containing 10% onion [obese onion 10% (OO) group] and standard diet containing 10% apple [obese apple 10% (OA) group] for 8 weeks. Food intake and body weight gain were higher in obese than in lean rats. Food efficiency was lower in OO and AO groups compared with OC group. Within the obese groups, total cholesterol, LDL-cholesterol, triacylglycerols, glucose, insulin and triglyceride-glucose index were lower in OO group than in OC group, and HDL-cholesterol was higher in OO group than in OC group. In general, antioxidant activity (ABTS•+ and FRAP), antioxidant enzyme activities (CAT, SOD, GPx), GSH/GSSG ratio, nitrate/nitrite and GLP-1 increased in OO and OA groups compared with OC. Oxidative stress biomarkers, namely protein carbonyls, 8-hydroxy-2'-deoxyguanosine, 8-epi-prostaglandin F2α, inflammatory and vascular injury biomarkers (PAI-1, TIMP-1, VEGF, sICAM-1, sE-Selectin, MCP-1) and leptin, were lower in OO and OA groups than in OC group. Endothelial impairment was partially reversed, and superoxide content and gene expression of NLRP3, NFKß1 and COX2 decreased, in OO and OA groups with respect to OC group. The study demonstrates that high pressure-processed onion and apple functional ingredients administration to obese Zucker rats causes beneficial effects on metabolic health, in particular through improving food efficiency ratio; exerting pronounced lipid-lowering effects; reducing glycemia, insulinemia, and biomarkers of hepatic injury (ALT, AST); improving antioxidant, oxidative stress, inflammatory and vascular injury biomarkers, metabolic hormones, and endothelial function; and decreasing proinflammatory gene expression of NLRP3, NFKß1 and COX2.

2.
Hypertension ; 79(7): 1361-1373, 2022 07.
Article in English | MEDLINE | ID: mdl-35477273

ABSTRACT

BACKGROUND: Abnormal accumulation of senescent cells in the vessel wall leads to a compromised vascular function contributing to vascular aging. Soluble DPP4 (dipeptidyl peptidase 4; sDPP4) secretion from visceral adipose tissue is enhanced in obesity, now considered a progeric condition. sDPP4 triggers vascular deleterious effects, albeit its contribution to vascular aging is unknown. We aimed to explore sDPP4 involvement in vascular aging, unraveling the molecular pathway by which sDPP4 acts on the endothelium. METHODS: Human endothelial cell senescence was assessed by senescence-associated ß-galactosidase assay, visualization of DNA damage, and expression of prosenescent markers, whereas vascular function was evaluated by myography over human dissected microvessels. In visceral adipose tissue biopsies from a cohort of obese patients, we explored several age-related parameters in vitro and ex vivo. RESULTS: By a common mechanism, sDPP4 triggers endothelial cell senescence and endothelial dysfunction in isolated human resistance arteries. sDPP4 activates the metabotropic receptor PAR2 (protease-activated receptor 2), COX-2 (cyclooxygenase 2) activity, and the production of TXA2 (thromboxane A2) acting over TP (thromboxane receptor) receptors (PAR2-COX-2-TP axis), leading to NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3) inflammasome activation. Obese patients exhibited impaired microarterial functionality in comparison to control nonobese counterparts. Importantly, endothelial dysfunction in obese patients positively correlated with greater expression of DPP4, prosenescent, and proinflammatory markers in visceral adipose tissue nearby the resistance arteries. Moreover, when DPP4 activity or sDPP4-induced prosenescent mechanism was blocked, endothelial dysfunction was restored back to levels of healthy subjects. CONCLUSIONS: These results reveal sDPP4 as a relevant mediator in early vascular aging and highlight its capacity activating main proinflammatory mediators in the endothelium that might be pharmacologically tackled.


Subject(s)
Cyclooxygenase 2 , Dipeptidyl Peptidase 4 , Inflammasomes , Biomarkers/metabolism , Cellular Senescence , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Endothelial Cells/metabolism , Humans , Inflammasomes/metabolism , Inflammasomes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Obesity/metabolism , Receptor, PAR-2/genetics , Receptor, PAR-2/metabolism , Receptors, Thromboxane/genetics , Receptors, Thromboxane/metabolism
3.
Aging Dis ; 13(1): 284-297, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35111374

ABSTRACT

The clinical relevance of IL-1ß in chronic inflammation underlying atherosclerosis has been reinforced by recent evidence associating pharmacological inhibition of the cytokine with lower cardiovascular risk. Previously, we have demonstrated a direct involvement of IL-1ß in endothelial senescence. Therefore, this can be a key mechanism contributing to the sterile inflammatory milieu associated with aging, termed inflammaging. In the present study, we have evaluated whether a positive feedback of IL-1ß in the NLRP3 inflammasome via NF-κB could promote human endothelial senescence in vitro and murine endothelial dysfunction in vivo. Our results indicate that the NLRP3 inflammasome is pivotal in mediating the detrimental effects of IL-1ß, showing that auto-activation is a crucial feature boosting endothelial cell senescence in vitro, which is paralleled by vascular dysfunction in vivo. Hence, the inhibitor of NLRP3 inflammasome assembly, MCC 950, was able to disrupt the aforementioned positive loop, thus alleviating inflammation, cell senescence and vascular dysfunction. Besides, we explored alternative NLRP3 inflammasome inhibitory agents such as the RAS heptapeptide Ang-(1-7) and the anti-aging protein klotho, both of which demonstrated protective effects in vitro and in vivo. Altogether, our results highlight a fundamental role for the hereby described NLRP3 inflammasome/IL-1ß positive feedback loop in stress-induced inflammaging and the associated vascular dysfunction, additionally providing evidence of a potential therapeutic use of MCC 950, Ang-(1-7) and recombinant klotho to block this loop and its deleterious effects.

4.
Sci Rep ; 10(1): 5386, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32214150

ABSTRACT

Visfatin/extracellular-nicotinamide-phosphoribosyltranferase-(eNampt) is a multifaceted adipokine enhanced in type-2-diabetes and obesity. Visfatin/eNampt cause in vitro endothelial dysfunction and vascular inflammation, although whether the same effects are achieved in vivo is unknown. Toll-like receptor-4 (TLR4), a main surface pattern recognition receptor of innate immune system is a potential target for visfatin/eNampt. We studied its capacity to generate vascular dysfunction in vivo, focusing on TLR4 role and downstream activation of nod-like-receptor-protein-3 (NLRP3)-inflammasome. 4 month-old C57BL/6 mice were exposed to 7 days infusion of visfatin/eNampt, alone or together with FK 866 (Nampt enzymatic inhibitor), CLI 095 (TLR4 blocker), MCC 950 (NLRP3-inflammasome inhibitor), or anakinra (interleukin(IL)-1-receptor antagonist). Endothelial dysfunction was tested in isolated microvessels. In human umbilical endothelial cells (HUVEC), proteins related to the NLRP3-inflammasome phosphorylated p-65, NLRP3, caspase-1, pro-IL-1ß, and mature IL-1ß were determined by Western blot, while the inflammasome related apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC-specks) was studied by immunofluorescence. Impaired endothelium-dependent relaxations were observed in isolated mesenteric microvessels from visfatin/eNampt-infused mice. This effect was attenuated by co-treatment with FK 866 or CLI 095, supporting a role for Nampt enzymatic activity and TLR4 activation. Moreover, cultured HUVEC exposed to visfatin/eNampt showed higher expression and activation of NLRP3-inflammasome. Again, this effect relied on Nampt enzymatic activity and TLR4 activation, and it was abrogated by the inflammasome assembly blockade with MCC 950. The endothelial dysfunction evoked by visfatin/eNampt infusion in vivo was also sensitive to both MCC 950 and anakinra treatments, suggesting that the NLRP3-inflammasome-driven tissular release of IL-1ß is the final mediator of endothelial damage. We conclude that Visfatin/eNampt produces in vivo vascular dysfunction in mice by a Nampt-dependent TLR4-mediated pathway, involving NLRP3-inflammasome and paracrine IL-1ß. Thus, those targets may become therapeutic strategies for attenuating the adipokine-mediated vascular dysfunction associated to obesity and/or type-2-diabetes.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Toll-Like Receptor 4/metabolism , Adipokines/metabolism , Animals , Carrier Proteins/metabolism , Cell Line , Cytokines/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Inflammasomes/metabolism , Inflammasomes/physiology , Male , Mice , Mice, Inbred C57BL , Nicotinamide Phosphoribosyltransferase/physiology , Signal Transduction/drug effects
5.
Aging Cell ; 18(3): e12913, 2019 06.
Article in English | MEDLINE | ID: mdl-30773786

ABSTRACT

Endothelial cell senescence is a hallmark of vascular aging that predisposes to vascular disease. We aimed to explore the capacity of the renin-angiotensin system (RAS) heptapeptide angiotensin (Ang)-(1-7) to counteract human endothelial cell senescence and to identify intracellular pathways mediating its potential protective action. In human umbilical vein endothelial cell (HUVEC) cultures, Ang II promoted cell senescence, as revealed by the enhancement in senescence-associated galactosidase (SA-ß-gal+) positive staining, total and telomeric DNA damage, adhesion molecule expression, and human mononuclear adhesion to HUVEC monolayers. By activating the G protein-coupled receptor Mas, Ang-(1-7) inhibited the pro-senescence action of Ang II, but also of a non-RAS stressor such as the cytokine IL-1ß. Moreover, Ang-(1-7) enhanced endothelial klotho levels, while klotho silencing resulted in the loss of the anti-senescence action of the heptapeptide. Indeed, both Ang-(1-7) and recombinant klotho activated the cytoprotective Nrf2/heme oxygenase-1 (HO-1) pathway. The HO-1 inhibitor tin protoporphyrin IX prevented the anti-senescence action evoked by Ang-(1-7) or recombinant klotho. Overall, the present study identifies Ang-(1-7) as an anti-senescence peptide displaying its protective action beyond the RAS by consecutively activating klotho and Nrf2/HO-1. Ang-(1-7) mimetic drugs may thus prove useful to prevent endothelial cell senescence and its related vascular complications.


Subject(s)
Angiotensin I/pharmacology , Cellular Senescence/drug effects , Glucuronidase/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , NF-E2-Related Factor 2/metabolism , Peptide Fragments/pharmacology , Receptors, G-Protein-Coupled/metabolism , Cells, Cultured , Humans , Klotho Proteins
6.
Front Immunol ; 9: 2141, 2018.
Article in English | MEDLINE | ID: mdl-30283459

ABSTRACT

Cardiovascular diseases (CVDs), including atherosclerosis, are globally the leading cause of death. Key factors contributing to onset and progression of atherosclerosis include the pro-inflammatory cytokines Interferon (IFN)α and IFNγ and the Pattern Recognition Receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT)s. Searches for compounds targeting the pTyr-SH2 interaction area of STAT3, yielded many small molecules, including STATTIC and STX-0119. However, many of these inhibitors do not seem STAT3-specific. We hypothesized that multi-STAT-inhibitors that simultaneously block STAT1, STAT2, and STAT3 activity and pro-inflammatory target gene expression may be a promising strategy to treat CVDs. Using comparative in silico docking of multiple STAT-SH2 models on multi-million compound libraries, we identified the novel multi-STAT inhibitor, C01L_F03. This compound targets the SH2 domain of STAT1, STAT2, and STAT3 with the same affinity and simultaneously blocks their activity and expression of multiple STAT-target genes in HMECs in response to IFNα. The same in silico and in vitro multi-STAT inhibiting capacity was shown for STATTIC and STX-0119. Moreover, C01L_F03, STATTIC and STX-0119 were also able to affect genome-wide interactions between IFNγ and TLR4 by commonly inhibiting pro-inflammatory and pro-atherogenic gene expression directed by cooperative involvement of STATs with IRFs and/or NF-κB. Moreover, we observed that multi-STAT inhibitors could be used to inhibit IFNγ+LPS-induced HMECs migration, leukocyte adhesion to ECs as well as impairment of mesenteric artery contractility. Together, this implicates that application of a multi-STAT inhibitory strategy could provide great promise for the treatment of CVDs.


Subject(s)
Atherosclerosis/genetics , Cardiovascular Diseases/genetics , Gene Expression Profiling/methods , Gene Expression/genetics , STAT Transcription Factors/genetics , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Cell Line , Cells, Cultured , Cyclic S-Oxides/chemistry , Cyclic S-Oxides/pharmacology , Gene Expression/drug effects , Genome-Wide Association Study/methods , Humans , Male , Mice, Inbred C57BL , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , STAT Transcription Factors/antagonists & inhibitors , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , src Homology Domains
7.
Redox Biol ; 14: 88-99, 2018 04.
Article in English | MEDLINE | ID: mdl-28888203

ABSTRACT

Glutathione (GSH) biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL), which is composed of the catalytic (GCLc) and the modulatory (GCLm) subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice). In murine lung endothelial cells (MLEC) derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177) and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT) mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+) male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH4. To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+) mice. We observed that obstructed kidneys from Gclc(e/+) mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses.


Subject(s)
Endothelial Cells/metabolism , Glutamate-Cysteine Ligase/genetics , Glutathione/biosynthesis , Animals , Biopterins/analogs & derivatives , Biopterins/therapeutic use , Cells, Cultured , Disease Models, Animal , Endothelial Cells/cytology , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosis , Glutamate-Cysteine Ligase/deficiency , Haploinsufficiency/genetics , Kidney/pathology , Kidney Diseases/drug therapy , Kidney Diseases/etiology , Kidney Diseases/pathology , Male , Mesenteric Arteries/physiology , Mice , Mice, Knockout , Nitric Oxide Synthase Type III/metabolism , Reactive Oxygen Species/metabolism
8.
Nutr Cancer ; 69(7): 1019-1027, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28937798

ABSTRACT

Colorectal cancer remains a main cause of deaths worldwide, and novel agents are being searched to treat this disease. Polyphenols have emerged as promising therapeutic tools in cancer. Resveratrol (3,5,4'-trihydoxy-trans-stilbene) induces cell death in different tumor cell lines, and it also stimulates the proliferation of specific breast and prostate cancer cell lines. Here, we studied the impact of resveratrol over a 100-fold concentration range on cell death and proliferation of HT-29 colorectal adenocarcinoma cells. After 96 h of treatment, a biphasic pattern was observed. At lower concentrations (1 and 10 µmol/l), resveratrol increased the cell number, as did the polyphenol quercetin. At 50 or 100 µmol/l, resveratrol reduced the cell number and increased the percentage of apoptotic or necrotic cells, thus indicating cytotoxicity. On HCT116 colon cancer cells, however, no proliferative properties of resveratrol were observed. Resveratrol-induced cytotoxicity on HT-29 cells was associated with NADPH oxidase activation and increased levels of histone γH2AX, a marker of DNA damage, paralleled by enhanced sirtuin 6 levels, likely as a repair mechanism. Overall, resveratrol may be an effective tool in anti-tumor chemotherapy. However, since under some conditions it may favor tumor cell growth, appropriate local concentrations must be achieved to minimize unwanted effects of resveratrol.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Colonic Neoplasms/drug therapy , Stilbenes/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage , Apoptosis/drug effects , Cell Death/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , DNA Damage/drug effects , Dose-Response Relationship, Drug , HCT116 Cells , HT29 Cells , Humans , L-Lactate Dehydrogenase/metabolism , Quercetin/pharmacology , Reactive Oxygen Species/metabolism , Resveratrol , Sirtuins/metabolism , Stilbenes/administration & dosage , Superoxides/metabolism
9.
Biochem Pharmacol ; 129: 67-72, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28131844

ABSTRACT

The Mas receptor is involved in the angiotensin (Ang)-(1-7) vasodilatory actions by increasing nitric oxide production (NO). We have previously demonstrated an increased production of Ang-(1-7) in human umbilical vein endothelial cells (HUVEC) exposed to estradiol (E2), suggesting a potential cross-talk between E2 and the Ang-(1-7)/Mas receptor axis. Here, we explored whether the vasoactive response and NO-related signalling exerted by E2 are influenced by Mas. HUVEC were exposed to 10nM E2 for 24h in the presence or absence of the selective Mas receptor antagonist A779, and the estrogen receptor (ER) antagonist ICI182780 (ICI). E2 increased Akt and endothelial nitric oxide synthase (eNOS) mRNA and protein expression, measured by RT-PCR and Western blot, respectively. Furthermore, E2 increased Akt activity (determined by the levels of phospho-Ser473) and eNOS activity (by the enhanced phosphorylation of Ser1177, the activated form), resulting in increased NO production, which was measured by the fluorescence probe DAF-2-FM. These signalling events were dependent on ER and Mas receptor activation, since they were abolished in the presence of ICI or A779. In ex-vivo functional experiments performed with a small-vessel myograph in isolated mesenteric vessels from wild-type mice pre-contracted with noradrenaline, the relaxant response to physiological concentrations of E2 was blocked by ICI and A779, to the same extent to that obtained in the vessels isolated from Mas-deficient. In conclusion, E2 induces NO production and vasodilation through mechanisms that require Mas receptor activation.


Subject(s)
Nitric Oxide/physiology , Proto-Oncogene Proteins/physiology , Receptors, Estrogen/physiology , Receptors, G-Protein-Coupled/physiology , Vasodilation/physiology , Animals , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Mas
10.
Front Pharmacol ; 7: 482, 2016.
Article in English | MEDLINE | ID: mdl-28018220

ABSTRACT

Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1ß. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1ß, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro7-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.

11.
J Hypertens ; 34(5): 869-76, 2016 May.
Article in English | MEDLINE | ID: mdl-26895560

ABSTRACT

BACKGROUND: Dipeptidyl peptidase-4 (DPP4) is a key protein in glucose homeostasis and a pharmacological target in type 2 diabetes mellitus. This study explored whether the novel adipokine soluble DPP4 (sDPP4) can cause endothelial dysfunction, an early marker of impaired vascular reactivity. METHOD: Reactivity was studied in mesenteric arteries from 3-month-old female mice, using a small vessel myograph. Thromboxane A2 (TXA2) release was explored in cultured human coronary artery endothelial cells by enzyme immunoassay. RESULTS: Neither the contractility to noradrenaline nor the endothelium-independent relaxations induced by sodium nitroprusside were modified by sDPP4. However, sDPP4 impaired in a concentration-dependent manner the endothelium-dependent relaxation elicited by acetylcholine. The DPP4 inhibitors K579 and linagliptin prevented the defective relaxation induced by sDPP4, as did the protease-activated receptor 2 (PAR2) inhibitor GB83. Downstream of PAR2, the cyclooxygenase (COX) inhibitor indomethacin, the COX2 inhibitor celecoxib or the thromboxane receptors blocker SQ29548 prevented the deleterious effects of sDPP4. Accordingly, sDPP4 triggered the release of TXA2 by endothelial cells, whereas TXA2 release was prevented by inhibiting DPP4, PAR2 or COX. CONCLUSION: In summary, these findings reveal sDPP4 as a direct mediator of endothelial dysfunction, acting through PAR2 activation and the release of vasoconstrictor prostanoids. By interfering with these actions, DPP4 inhibitors might help preserving endothelial function in the context of cardiometabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Endothelium, Vascular/metabolism , Receptor, PAR-2/metabolism , Thromboxane A2/metabolism , Animals , Dipeptidyl Peptidase 4/adverse effects , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Mesenteric Arteries/metabolism , Mice , Mice, Inbred C57BL
12.
Cardiovasc Diabetol ; 13: 158, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25518980

ABSTRACT

BACKGROUND: Endothelial dysfunction is a crucial early phenomenon in vascular diseases linked to diabetes mellitus and associated to enhanced oxidative stress. There is increasing evidence about the role for pro-inflammatory cytokines, like interleukin-1ß (IL-1ß), in developing diabetic vasculopathy. We aimed to determine the possible involvement of this cytokine in the development of diabetic endothelial dysfunction, analysing whether anakinra, an antagonist of IL-1 receptors, could reduce this endothelial alteration by interfering with pro-oxidant and pro-inflammatory pathways into the vascular wall. RESULTS: In control and two weeks evolution streptozotocin-induced diabetic rats, either untreated or receiving anakinra, vascular reactivity and NADPH oxidase activity were measured, respectively, in isolated rings and homogenates from mesenteric microvessels, while nuclear factor (NF)-κB activation was determined in aortas. Plasma levels of IL-1ß and tumor necrosis factor (TNF)-α were measured by ELISA. In isolated mesenteric microvessels from control rats, two hours incubation with IL-1ß (1 to 10 ng/mL) produced a concentration-dependent impairment of endothelium-dependent relaxations, which were mediated by enhanced NADPH oxidase activity via IL-1 receptors. In diabetic rats treated with anakinra (100 or 160 mg/Kg/day for 3 or 7 days before sacrifice) a partial improvement of diabetic endothelial dysfunction occurred, together with a reduction of vascular NADPH oxidase and NF-κB activation. Endothelial dysfunction in diabetic animals was also associated to higher activities of the pro-inflammatory enzymes cyclooxygenase (COX) and the inducible isoform of nitric oxide synthase (iNOS), which were markedly reduced after anakinra treatment. Circulating IL-1ß and TNF-α levels did not change in diabetic rats, but they were lowered by anakinra treatment. CONCLUSIONS: In this short-term model of type 1 diabetes, endothelial dysfunction is associated to an IL-1 receptor-mediated activation of vascular NADPH oxidase and NF-κB, as well as to vascular inflammation. Moreover, endothelial dysfunction, vascular oxidative stress and inflammation were reduced after anakinra treatment. Whether this mechanism can be extrapolated to a chronic situation or whether it may apply to diabetic patients remain to be established. However, it may provide new insights to further investigate the therapeutic use of IL-1 receptor antagonists to obtain vascular benefits in patients with diabetes mellitus and/or atherosclerosis.


Subject(s)
Antirheumatic Agents/pharmacology , Diabetic Angiopathies/drug therapy , Endothelium, Vascular/drug effects , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin 1 Receptor Antagonist Protein/pharmacology , Animals , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Inflammation/drug therapy , Male , NF-kappa B/drug effects , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Receptors, Interleukin-1/drug effects , Streptozocin , Tumor Necrosis Factor-alpha/metabolism
13.
J Clin Invest ; 124(9): 4039-51, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25105365

ABSTRACT

The endothelium plays a fundamental role in maintaining vascular homeostasis by releasing factors that regulate local blood flow, systemic blood pressure, and the reactivity of leukocytes and platelets. Accordingly, endothelial dysfunction underpins many cardiovascular diseases, including hypertension, myocardial infarction, and stroke. Herein, we evaluated mice with endothelial-specific deletion of Nppc, which encodes C-type natriuretic peptide (CNP), and determined that this mediator is essential for multiple aspects of vascular regulation. Specifically, disruption of CNP leads to endothelial dysfunction, hypertension, atherogenesis, and aneurysm. Moreover, we identified natriuretic peptide receptor-C (NPR-C) as the cognate receptor that primarily underlies CNP-dependent vasoprotective functions and developed small-molecule NPR-C agonists to target this pathway. Administration of NPR-C agonists promotes a vasorelaxation of isolated resistance arteries and a reduction in blood pressure in wild-type animals that is diminished in mice lacking NPR-C. This work provides a mechanistic explanation for genome-wide association studies that have linked the NPR-C (Npr3) locus with hypertension by demonstrating the importance of CNP/NPR-C signaling in preserving vascular homoeostasis. Furthermore, these results suggest that the CNP/NPR-C pathway has potential as a disease-modifying therapeutic target for cardiovascular disorders.


Subject(s)
Endothelium, Vascular/physiology , Homeostasis , Natriuretic Peptide, C-Type/physiology , Animals , Aortic Aneurysm/etiology , Atherosclerosis/etiology , Blood Platelets/physiology , Blood Pressure , Calcium/metabolism , Female , Leukocytes/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Rats , Vasodilation/drug effects
14.
Nutr Metab (Lond) ; 11: 57, 2014.
Article in English | MEDLINE | ID: mdl-25926860

ABSTRACT

BACKGROUND: The aim of the present study was to examine the effects of onion as functional ingredient on the oxidative status, lipoprotein levels (total cholesterol-TC, HDL-C, LDL-C), triacylglycerides (TAG) and vascular reactivity of mesenteric arteries in hypercholesterolemic Wistar rats. METHODS: Twenty-four animals were fed with three different diets [control, high-cholesterol diet (HC) and high-cholesterol enriched with onion diet (HCO)]. After seven weeks of experimental feeding the rats were euthanized for blood and tissues collection. TC, HDL-C, LDL-C and TAG were measured, and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS(•+)) scavenging capacity and ferric reducing antioxidant power (FRAP) were determined in plasma. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were assayed in erythrocyte lysates. Endothelium-dependent vasodilation to acetylcholine was evaluated in mesenteric arterial segments. NADPH oxidase (NOX) was also measured by lucigenin-derived chemiluminiscence. RESULTS: The dietary cholesterol content significantly affected plasma lipoprotein levels, increased superoxide generation from NOX, and caused impaired endothelium-dependent vasodilation in the rat mesenteric arteries. Onion ingredient improved antioxidant status in HCO group, as it was evidenced by ABTS(•+) and FRAP values and SOD and GPx enzyme activities compared to the HC-fed group, reduced the increment in NOX activity and reversed endothelial dysfunction promoted by the HC diet. Scavenging of superoxide with TEMPOL or inhibition of NOX with apocynin improved endothelium-dependent vasodilation only in HC-fed rats. CONCLUSIONS: Enrichment of diet with onion as functional ingredient could be proposed as a complementary approach to prevent or partially modulate vascular dysfunction, reducing some of the risk indexes linked to initial development of atherosclerosis.

15.
J Physiol ; 591(9): 2275-85, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23459756

ABSTRACT

The heptapeptide angiotensin-(1-7) is a biologically active metabolite of angiotensin II, the predominant peptide of the renin-angiotensin system. Recently, we have shown that the receptor Mas is associated with angiotensin-(1-7)-induced signalling and mediates, at least in part, the vasodilatory properties of angiotensin-(1-7). However, it remained controversial whether an additional receptor could account for angiotensin-(1-7)-induced vasorelaxation. Here, we used two different angiotensin-(1-7) antagonists, A779 and d-Pro-angiotensin-(1-7), to address this question and also to study their influence on the vasodilatation induced by bradykinin. Isolated mesenteric microvessels from both wild-type and Mas-deficient C57Bl/6 mice were precontracted with noradrenaline, and vascular reactivity to angiotensin-(1-7) and bradykinin was subsequently studied using a small-vessel myograph. Furthermore, mechanisms for Mas effects were investigated in primary human umbilical vein endothelial cells. Both angiotensin-(1-7) and bradykinin triggered a concentration-dependent vasodilatation in wild-type microvessels, which was absent in the presence of a nitric oxide synthase inhibitor. In these vessels, the pre-incubation with the Mas antagonists A779 or d-Pro-angiotensin-(1-7) totally abolished the vasodilatory capacity of both angiotensin-(1-7) and bradykinin, which was nitric oxide mediated. Accordingly, Mas-deficient microvessels lacked the capacity to relax in response to either angiotensin-(1-7) or bradykinin. Pre-incubation of human umbilical vein endothelial cells with A779 prevented bradykinin-mediated NO generation and NO synthase phosphorylation at serine 1177. The angiotensin-(1-7) antagonists A779 and d-Pro-angiotensin-(1-7) equally block Mas, which completely controls the angiotensin-(1-7)-induced vasodilatation in mesenteric microvessels. Importantly, Mas also appears to be a critical player in NO-mediated vasodilatation induced by renin-angiotensin system-independent agonists by altering phosphorylation of NO synthase.


Subject(s)
Angiotensin II/analogs & derivatives , Microvessels/drug effects , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , Angiotensin I/pharmacology , Angiotensin II/pharmacology , Animals , Bradykinin/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microvessels/physiology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins/physiology , Receptors, G-Protein-Coupled/physiology , Vasodilation/drug effects , Vasodilator Agents/pharmacology
16.
J Pediatr Surg ; 47(11): 2044-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23163996

ABSTRACT

BACKGROUND: Endothelium-dependent relaxations in human adult mesenteric microvessels involve 3 different main mechanisms: cyclooxygenase (COX)-derived prostanoids, nitric oxide (NO), and endothelium-derived hyperpolarizing factor (EDHF), which elicits vascular smooth muscle hyperpolarization and relaxation. There are some pathological conditions with an abnormal balance between mesenteric vasoconstriction and vasodilatation inputs leading to endothelial dysfunction and tissue injury. PURPOSE: The purpose was to characterize the mechanisms mediating endothelium-dependent relaxation and differences in children and adult mesenteric microvessels. METHODS: Microvessels were dissected from omentum obtained from children (3-6 years old) and adults (25-41 years old) and mounted as ring preparations in a small vessel myograph. RESULTS: In microvessels precontracted with a thromboxane analogue, the endothelium-dependent relaxations to bradykinin (10 nmol/L to 30 µmol/L) mediated by EDHF, that is, nonsensitive to COX (10 µmol/L indomethacin) and NO synthase blockade (100 µmol/L N-nitro-L-arginine methyl ester), were higher in children than in adults. When EDHF was blunted by a depolarizing precontraction with KCl, the remaining COX- and NO-dependent relaxations were significantly lower in children. CONCLUSIONS: The EDHF's role in the endothelium-dependent relaxations is higher in children's vasculature. This suggests that endothelial dysfunction in mesenteric microvessels in children is likely more dependent on EDHF-related mechanisms rather than on NO- or COX-derived prostanoids.


Subject(s)
Biological Factors/metabolism , Microvessels/physiology , Omentum/blood supply , Vasodilation/physiology , Adult , Age Factors , Biomarkers/metabolism , Child , Child, Preschool , Humans , In Vitro Techniques , Microvessels/metabolism , Nitric Oxide/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism
17.
Exp Gerontol ; 47(9): 734-40, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22776133

ABSTRACT

Endothelial vasodilation in human vessels is impaired by aging and other cardiovascular risk factors (CVRF) but the differential impact of aging and CVRF in human endothelial function is not completely elucidated. The aim of this work was to evaluate the influence of aging on the effects of peroxisome proliferator-activated receptor (PPAR)-α and -γ subtype agonists on endothelium-dependent vasodilation of isolated human vessels from subjects with or without CVRF. Human mesenteric microarteries were dissected from omentum specimens obtained from subjects younger or older than 60 years having or not CVRF and mounted in wire myographs to evaluate endothelium-dependent relaxation to bradykinin (BK). Aging and CVRF independently reduced endothelium-dependent relaxations. An additional impairment was produced when aging and CVRF co-existed (p<0.001). In vessels from adult subjects PPARγ agonist, GW1929 (1 µM) improved BK-induced responses only in those obtained from subjects with CVRF. By contrast, GW1929 improved the responses in vessels from elderly subjects having or not CVRF. PPARα agonist, GW7647 (1 µM), enhanced endothelial vasodilation in adults with CVRF (p<0.001) but lack any effect in vessels from older subjects having or not CVRF. In vessels from subjects with CVRF, superoxide dismutase (SOD; 100 U/ml) improved BK-induced responses only in elderly subjects (p<0.001). Vascular aging negatively impacts endothelial function independently of the presence of additional CVRF through specific molecular mechanisms involving superoxide generation. While PPARγ activation remains effective, the improving effects of PPARα agonists on endothelial responses disappear in aged human vessels.


Subject(s)
Cardiovascular Diseases/etiology , Endothelium, Vascular/drug effects , Microvessels/drug effects , PPAR alpha/antagonists & inhibitors , PPAR gamma/antagonists & inhibitors , Vasodilation/drug effects , Adult , Age Factors , Aged , Aged, 80 and over , Analysis of Variance , Benzophenones/pharmacology , Butyrates/pharmacology , Cardiovascular Diseases/physiopathology , Case-Control Studies , Female , Free Radical Scavengers/pharmacology , Humans , Male , Mesenteric Arteries/drug effects , Middle Aged , Oxidative Stress/physiology , Phenylurea Compounds/pharmacology , Risk Factors , Superoxide Dismutase/pharmacology , Superoxides/metabolism , Tyrosine/analogs & derivatives , Tyrosine/pharmacology
18.
Front Physiol ; 3: 132, 2012.
Article in English | MEDLINE | ID: mdl-22783194

ABSTRACT

Vascular aging is a key process determining health status of aged population. Aging is an independent cardiovascular risk factor associated to an impairment of endothelial function, which is a very early and important event leading to cardiovascular disease. Vascular aging, formerly being considered an immutable and inexorable risk factor, is now viewed as a target process for intervention in order to achieve a healthier old age. A further knowledge of the mechanisms underlying the age-related vascular dysfunction is required to design an adequate therapeutic strategy to prevent or restore this impairment of vascular functionality. Among the proposed mechanisms that contribute to age-dependent endothelial dysfunction, this review is focused on the following aspects occurring into the vascular wall: (1) the reduction of nitric oxide (NO) bioavailability, caused by diminished NO synthesis and/or by augmented NO scavenging due to oxidative stress, leading to peroxynitrite formation (ONOO(-)); (2) the possible sources involved in the enhancement of oxidative stress; (3) the increased activity of vasoconstrictor factors; and (4) the development of a low-grade pro-inflammatory environment. Synergisms and interactions between all these pathways are also analyzed. Finally, a brief summary of some cellular mechanisms related to endothelial cell senescence (including telomere and telomerase, stress-induced senescence, as well as sirtuins) are implemented, as they are likely involved in the age-dependent endothelial dysfunction, as well as in the lower vascular repairing capacity observed in the elderly. Prevention or reversion of those mechanisms leading to endothelial dysfunction through life style modifications or pharmacological interventions could markedly improve cardiovascular health in older people.

19.
PLoS One ; 6(11): e27299, 2011.
Article in English | MEDLINE | ID: mdl-22073309

ABSTRACT

Visfatin, also known as extracellular pre-B-cell colony-enhancing factor (PBEF) and nicotinamide phosphoribosyltransferase (Nampt), is an adipocytokine whose circulating levels are enhanced in metabolic disorders, such as type 2 diabetes mellitus and obesity. Circulating visfatin levels have been positively associated with vascular damage and endothelial dysfunction. Here, we investigated the ability of visfatin to directly impair vascular reactivity in mesenteric microvessels from both male Sprague-Dawley rats and patients undergoing non-urgent, non-septic abdominal surgery. The pre-incubation of rat microvessels with visfatin (50 and 100 ng/mL) did not modify the contractile response to noradrenaline (1 pmol/L to 30 µmol/L), as determined using a small vessel myograph. However, visfatin (10 to 100 ng/mL) concentration-dependently impaired the relaxation to acetylcholine (ACh; 100 pmol/L to 3 µmol/L), without interfering with the endothelium-independent relaxation to sodium nitroprusside (1 nmol/L to 3 µmol/L). In both cultured human umbilical vein endothelial cells and rat microvascular preparations, visfatin (50 ng/mL) stimulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, as determined by lucigenin-derived chemiluminiscence. The relaxation to ACh impaired by visfatin was restored by the NADPH oxidase inhibitor apocynin (10 µmol/L). Additionally, the Nampt inhibitor APO866 (10 mmol/L to 10 µmol/L), but not an insulin receptor-blocking antibody, also prevented the stimulation of NADPH oxidase and the relaxation impairment elicited by visfatin. Accordingly, the product of Nampt activity nicotinamide mononucleotide (100 nmol/L to 1 mmol/L) stimulated endothelial NADPH oxidase activity and concentration-dependently impaired ACh-induced vasorelaxation. In human mesenteric microvessels pre-contracted with 35 mmol/L potassium chloride, the endothelium-dependent vasodilation to bradykinin (1 nmol/L to 3 µmol/L) was equally impaired by visfatin and restored upon co-incubation with APO866. In conclusion, visfatin impairs endothelium-dependent relaxation through a mechanism involving NADPH oxidase stimulation and relying on Nampt enzymatic activity, and therefore arises as a potential new player in the development of endothelial dysfunction.


Subject(s)
Endothelium, Vascular/physiology , Mesentery/blood supply , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/physiology , Vasodilation/physiology , Acetylcholine/pharmacology , Animals , Cells, Cultured , Humans , Rats , Vasodilation/drug effects
20.
Am J Nephrol ; 34(2): 104-14, 2011.
Article in English | MEDLINE | ID: mdl-21701161

ABSTRACT

BACKGROUND: Apoptosis and inflammatory/oxidative stress have been associated with hyperglycemia in human peritoneal mesothelial cells (HPMCs) and other cell types. We and others have highlighted the role of early products of non-enzymatic protein glycation in inducing proinflammatory conditions and increasing apoptotic rates in HPMCs. Loss of HPMCs seems to be a hallmark of complications associated with peritoneal membrane dysfunction. The aim of this work is to elucidate the mechanisms by which Amadori adducts may act upon HPMC apoptosis. METHODS: HPMCs isolated from different patients were exposed to different Amadori adducts, i.e. highly glycated hemoglobin (10 nM) and glycated bovine serum albumin (250 µg/ml), to study cell death and several proapoptotic markers by different experimental approaches. RESULTS: Amadori adducts, but not their respective controls, impaired cell proliferation and cell viability by means of apoptosis in a time-dependent manner. They regulated the intrinsic mitochondrial cell death signaling pathway and modulated activation of caspases, Bax, iNOS, p53, NF-κB, and mitogen-activated protein kinases (p38 and JNK) through different reactive oxygen and nitrosative species. CONCLUSIONS: Our data strongly support the idea that long-term hyperglycemia could act as an inducer of apoptosis in HPMCs through Amadori adducts, involving different oxidative and nitrosative reactive species.


Subject(s)
Apoptosis , Epithelium/pathology , Glycolipids/pharmacology , Nitrogen/metabolism , Oxidative Stress , Phosphatidylethanolamines/pharmacology , Animals , Cattle , Cell Death , Cytochromes c/metabolism , Humans , Hyperglycemia/metabolism , Inflammation , L-Lactate Dehydrogenase/metabolism , MAP Kinase Signaling System , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...