Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675193

ABSTRACT

Recently, we reported a new fibroblast activation protein (FAP) inhibitor radiopharmaceutical based on the 99mTc-((R)-1-((6-hydrazinylnicotinoyl)-D-alanyl) pyrrolidin-2-yl) boronic acid (99mTc-HYNIC-D-Alanine-BoroPro)(99mTc-HYNIC-iFAP) structure for tumor microenvironment SPECT imaging. This research aimed to synthesize 68Ga-[2,2',2″,2‴-(2-(4-(2-(5-(((S)-1-((S)-2-boronopyrrolidin-1-yl)-1-oxopropan-2-yl)carbamoyl)pyridin-2-yl)hydrazine-1-carbothioamido)benzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid] (68Ga-DOTA-D-Alanine-BoroPro)(68Ga-iFAP) as a novel radiotracer for PET imaging and evaluate its usefulness for FAP expression in malignant and non-malignant tissues. The coupling of p-SCN-benzene DOTA with HYNIC-iFAP was used for the chemical synthesis and further labeling with 68Ga. Radiochemical purity was verified by radio-HPLC. The specificity of 68Ga-iFAP was evaluated in HCT116 cells, in which FAP expression was verified by immunofluorescence and Western blot. Biodistribution and biokinetic studies were performed in murine models. 68Ga-iFAP uptake at the myocardial level was assessed in mice with induced infarction. First-in-human images of 68Ga-iFAP in healthy subjects and patients with myocardial infarction, glioblastoma, prostate cancer, and breast cancer were also obtained. DOTA-D-Alanine BoroPro was prepared with a chemical purity of 98% and was characterized by UPLC mass spectroscopy, FT-IR, and UV-vis. The 68Ga-iFAP was obtained with a radiochemical purity of >95%. In vitro and in vivo studies demonstrated 68Ga-iFAP-specific recognition for FAP, rapid renal elimination, and adequate visualization of the glioblastoma, breast tumor, prostate cancer, and myocardial infarction sites. The results of this research justify further dosimetry and clinical trials to establish the specificity and sensitivity of 68Ga-iFAP PET for FAP expression imaging.

2.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35745648

ABSTRACT

Fibroblast activation protein (FAP) is highly expressed on the cancer-associated fibroblasts (CAF) of the tumor stroma. Recently, we reported the preclinical evaluation and clinical biokinetics of a novel 99mTc-labeled FAP inhibitor radioligand ([99mTc]Tc-iFAP). This research aimed to evaluate [99mTc]Tc-iFAP for the tumor stroma imaging of six different cancerous entities and analyze them from the perspective of stromal heterogeneity. [99mTc]Tc-iFAP was prepared from freeze-dried kits with a radiochemical purity of 98 ± 1%. The study included thirty-two patients diagnosed with glioma (n = 5); adrenal cortex neuroendocrine tumor (n = 1); and breast (n = 21), lung (n = 2), colorectal (n = 1) and cervical (n = 3) cancer. Patients with glioma had been evaluated with a previous cranial MRI scan and the rest of the patients had been involved in a [18F]FDG PET/CT study. All oncological diagnoses were corroborated histopathologically. The patients underwent SPECT/CT brain imaging (glioma) or thoracoabdominal imaging 1 h after [99mTc]Tc-iFAP administration (i.v., 735 ± 63 MBq). The total lesions (n = 111) were divided into three categories: primary tumors (PT), lymph node metastases (LNm), and distant metastases (Dm). [99mTc]Tc-iFAP brain imaging was positive in four high-grade WHO III-IV gliomas and negative in one treatment-naive low-grade glioma. Both [99mTc]Tc-iFAP and [18F]FDG detected 26 (100%) PT, although the number of positive LNm and Dm was significantly higher with [18F]FDG [82 (96%)], in comparison to [99mTc]Tc-iFAP imaging (35 (41%)). Peritoneal carcinomatosis lesions in a patient with recurrent colorectal cancer were only visualized with [99mTc]Tc-iFAP. In patients with breast cancer, a significant positive correlation was demonstrated among [99mTc]Tc-iFAP uptake values (Bq/cm3) of PT and the molecular subtype, being higher for subtypes HER2+ and Luminal B HER2-enriched. Four different CAF subpopulations have previously been described for LNm of breast cancer (from CAF-S1 to CAF-S4). The only subpopulation that expresses FAP is CAF-S1, which is preferentially detected in aggressive subtypes (HER2 and triple-negative), confirming that FAP+ is a marker for poor disease prognosis. The results of this pilot clinical research show that [99mTc]Tc-iFAP SPECT imaging is a promising tool in the prognostic assessment of some solid tumors, particularly breast cancer.

3.
Pharmaceuticals (Basel) ; 15(5)2022 May 11.
Article in English | MEDLINE | ID: mdl-35631416

ABSTRACT

Tumor microenvironment fibroblasts overexpress the fibroblast activation protein (FAP). We recently reported the preclinical evaluation of [99mTc]Tc-iFAP as a new SPECT radioligand capable of detecting FAP. This research aimed to evaluate the kinetic and dosimetric profile of [99mTc]Tc-iFAP in healthy volunteers, and to assess the radioligand uptake by different solid tumors in three cancer patients. [99mTc]Tc-iFAP was obtained from lyophilized formulations prepared under GMP conditions with >98% radiochemical purity. Whole-body scans of six healthy subjects were obtained at 0.5, 2, 4, and 24 h after [99mTc]Tc-iFAP (740 MBq) administration. A 2D-planar/3D-SPECT hybrid activity quantitation method was used to fit the biokinetic models of the source organs (volume of interest: VOI) as exponential functions (A(t)VOI). The total nuclear transformations (N) that occurred in the source organs were calculated from the mathematical integration (0,∞) of A(t)VOI. The OLINDA code was used to estimate the radiation doses. Three treatment-naive patients (breast, lung, and cervical cancer) with a prior [18F]FDG PET/CT scan underwent whole-body, chest, and abdominal SPECT/CT scanning after [99mTc]Tc-iFAP (740 MBq) administration. Both imaging methods were compared visually and quantitatively. Oncological diagnoses were performed histopathologically. The results showed favorable [99mTc]Tc-iFAP biodistribution and kinetics due to rapid blood activity removal (t1/2α = 2.22 min and t1/2ß = 90 min) and mainly renal clearance. The mean radiation equivalent doses were 5.2 ± 0.8 mSv for the kidney and 1.7 ± 0.3 mSv for the liver after administration of 740 MBq. The effective dose was 2.3 ± 0.4 mSv/740 MBq. [99mTc]Tc-iFAP demonstrated high and reliable uptake in the primary tumor lesions and lymph node metastases in patients with breast, cervical, and lung cancer, which correlated with that detected by [18F]FDG PET/CT. The tumor microenvironment molecular imaging from cancer patients obtained in this research validates the performance of additional clinical studies to determine the utility of [99mTc]Tc-iFAP in the diagnosis and prognosis of different types of solid tumors.

4.
Ann Nucl Med ; 35(9): 994-1003, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34302628

ABSTRACT

Hyperparathyroidism is a common calcium metabolic disorder, characterized by the presence of high concentrations or inappropriately normal concentrations of parathyroid hormone (PTH) in the context of high calcium. Pharmacological and surgical management is available as treatment. The objective of diagnostic imaging is to determine the location of the causal lesion. For these purposes, non-invasive methods can be divided into anatomical or functional studies, with nuclear medicine studies being in the latter category. The objective of this review, is to establish the similarities and differences that exist in the clinical practice guidelines on conventional and molecular nuclear medicine studies in parathyroid disease.


Subject(s)
Hyperparathyroidism , Nuclear Medicine , Consensus , Humans , Parathyroid Glands
5.
Nucl Med Biol ; 96-97: 1-8, 2021.
Article in English | MEDLINE | ID: mdl-33640681

ABSTRACT

BACKGROUND: PSMA (prostate-specific membrane antigen) protein is heavily expressed in the proliferating microvasculature of high-grade gliomas (HGG) and brain metastases (BM). This research aimed to assess [99mTc]Tc-iPSMA SPECT brain imaging as a potential specific diagnosis of HGG and BM by PSMA-targeting in their proliferating vasculature. METHODS: Forty-one patients, with suspected brain tumors, as detected by enhanced MRI scanning, were enrolled to undergo preoperative [99mTc]Tc-iPSMA SPECT brain imaging. Semiquantitative image analyses, to evaluate the maximum target-to-background ratio (TBRmax), were performed. All diagnoses were histopathologically confirmed. PSMA expression was evaluated by immunohistochemistry (IHC) in 11 brain tumor tissues. TBRmax values were correlated with IHC results and tumor WHO grade (HGG vs LGG). RESULTS: [99mTc]Tc-iPSMA images showed increased uptake in BM, HGG, and recurrent gliomas (TBRmax of 25.1 ± 7.1, 18.5 ± 9.0, 15.0 ± 9.9, respectively), and was negative in treatment-naive patients with LGG and reactive gliosis. PSMA was highly expressed in the vascular endothelium of grade IV gliomas and BM, while its expression was extremely low in LGG and completely absent in gliosis. By using 2.8 as a threshold value for TBRmax, the specificity, sensitivity, PPV, NPV and accuracy were 100%, 94%, 100%, 77% and 95%, respectively. CONCLUSIONS: The results of this pilot study show that [99mTc]Tc-iPSMA SPECT brain imaging is a specific and potentially useful neuroimaging tool for assessing tumoral neovasculature formation in gliomas and brain metastases.


Subject(s)
Antigens, Surface , Glioma , Glutamate Carboxypeptidase II , Brain Neoplasms , Humans , Middle Aged , Pilot Projects
6.
Contrast Media Mol Imaging ; 2020: 2525037, 2020.
Article in English | MEDLINE | ID: mdl-32410920

ABSTRACT

Overexpression of the chemokine-4 receptor (CXCR4) in brain tumors is associated with high cancer cell invasiveness. Recently, we reported the preclinical evaluation of 99mTc-CXCR4-L (cyclo-D-Tyr-D-[NMe]Orn[EDDA-99mTc-6-hydrazinylnicotinyl]-Arg-NaI-Gly) as a SPECT radioligand capable of specifically detecting the CXCR4 protein. This research aimed to estimate the biokinetic behavior and radiation dosimetry of 99mTc-CXCR4-L in healthy subjects, as well as to correlate the radiotracer uptake by brain tumors in patients, with the histological grade of differentiation and CXCR4 expression evaluated by immunohistochemistry. 99mTc-CXCR4-L was obtained from freeze-dried kits prepared under GMP conditions (radiochemical purities >97%). Whole-body scans from six healthy volunteers were acquired at 0.3, 1, 2, 4, 6, and 24 h after 99mTc-CXCR4-L administration (0.37 GBq). Time-activity curves of different source organs were obtained from the image sequence to adjust the biokinetic models. The OLINDA/EXM code was employed to calculate the equivalent and effective radiation doses. Nine patients with evidence of brain tumor injury (6 primaries and 3 recurrent), determined by MRI, underwent cerebral SPECT at 3 h after administration of 99mTc-CXCR4-L (0.74 GBq). Data were expressed as a T/B (tumor uptake/background) ratio. Biopsy examinations included histological grading and anti-CXCR4 immunohistochemistry. Results showed a fast blood activity clearance (T 1/2 α = 0.81 min and T 1/2 ß = 12.19 min) with renal and hepatobiliary elimination. The average equivalent doses were 6.10E - 04, 1.41E - 04, and 3.13E - 05 mSv/MBq for the intestine, liver, and kidney, respectively. The effective dose was 3.92E - 03 mSv/MBq. SPECT was positive in 7/9 patients diagnosed as grade II oligodendroglioma (two patients), grade IV glioblastoma (two patients), grade IV gliosarcoma (one patient), metastasis, and diffuse astrocytoma with T/B ratios of 1.3, 2.3, 13, 7, 19, 5.5, and 3.9, respectively, all of them with positive immunohistochemistry. A direct relationship between the grade of differentiation and the expression of CXCR4 was found. The two negative SPECT studies showed negative immunohistochemistry with a diagnosis of reactive gliosis. This "proof-of-concept" research warrants further clinical studies to establish the usefulness of 99mTc-CXCR4-L in the diagnosis and prognosis of brain tumors.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Proof of Concept Study , Radiometry , Receptors, CXCR4/metabolism , Technetium/pharmacokinetics , Adult , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Neoplasm Invasiveness , Technetium/blood , Technetium/chemistry , Tomography, Emission-Computed, Single-Photon , Whole Body Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...