Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Anat ; 244(5): 815-830, 2024 May.
Article in English | MEDLINE | ID: mdl-38183319

ABSTRACT

Structural asymmetries of brain regions associated with lateralised functions have been extensively studied. However, there are fewer morphometric analyses of asymmetries of the gyri and sulci of the entire cortex. The current study assessed cortical asymmetries in a sample of healthy adults (N = 175) from an admixed population from South America. Grey matter volume and surface area of 66 gyri and sulci were quantified on T1 magnetic resonance images. The departure from zero of the differences between left and right hemispheres (L-R), a measure of directional asymmetry (DA), the variance of L-R, and an index of fluctuating asymmetry (FA) were evaluated for each region. Significant departures from perfect symmetry were found for most cortical gyri and sulci. Regions showed leftward asymmetry at the population level in the frontal lobe and superior lateral parts of the parietal lobe. Rightward asymmetry was found in the inferior parietal, occipital, frontopolar, and orbital regions, and the cingulate (anterior, middle, and posterior-ventral). Despite this general pattern, several sulci showed the opposite DA compared to the neighbouring gyri, which remarks the need to consider the neurobiological differences in gyral and sulcal development in the study of structural asymmetries. The results also confirm the absence of DA in most parts of the inferior frontal gyrus and the precentral region. This study contributes with data on populations underrepresented in the databases used in neurosciences. Among its findings, there is agreement with previous results obtained in populations of different ancestry and some discrepancies in the middle frontal and medial parietal regions. A significant DA not reported previously was found for the volume of long and short insular gyri and the central sulcus of the insula, frontomarginal, transverse frontopolar, paracentral, and middle and posterior parts of the cingulate gyrus and sulcus, gyrus rectus, occipital pole, and olfactory sulcus, as well as for the volume and area of the transverse collateral sulcus and suborbital sulcus. Also, several parcels displayed significant variability in the left-right differences, which can be partially attributable to developmental instability, a source of FA. Moreover, a few gyri and sulci displayed ideal FA with non-significant departures from perfect symmetry, such as subcentral and posterior cingulate gyri and sulci, inferior frontal and fusiform gyri, and the calcarine, transverse collateral, precentral, and orbital sulci. Overall, these results show that asymmetries are ubiquitous in the cerebral cortex.


Subject(s)
Cerebral Cortex , Gray Matter , Adult , Humans , Gray Matter/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Frontal Lobe , Gyrus Cinguli , Magnetic Resonance Imaging/methods , South America
2.
J Vis Exp ; (195)2023 May 19.
Article in English | MEDLINE | ID: mdl-37318260

ABSTRACT

Neuroimages are a valuable tool for studying brain morphology in experiments using animal models. Magnetic resonance imaging (MRI) has become the standard method for soft tissues, although its low spatial resolution poses some limits for small animals. Here, we describe a protocol for obtaining high-resolution three-dimensional (3D) information on mouse neonate brains and skulls using micro-computed tomography (micro-CT). The protocol includes those steps needed to dissect the samples, stain and scan the brain, and obtain morphometric measurements of the whole organ and regions of interest (ROIs). Image analysis includes the segmentation of structures and the digitization of point coordinates. In sum, this work shows that the combination of micro-CT and Lugol's solution as a contrast agent is a suitable alternative for imaging the perinatal brains of small animals. This imaging workflow has applications in developmental biology, biomedicine, and other sciences interested in assessing the effect of diverse genetic and environmental factors on brain development.


Subject(s)
Contrast Media , Image Processing, Computer-Assisted , Animals , Mice , X-Ray Microtomography/methods , Magnetic Resonance Imaging , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods
3.
Front Neuroanat ; 16: 1022758, 2022.
Article in English | MEDLINE | ID: mdl-37089581

ABSTRACT

Introduction: The perisylvian region is the cortical core of language and speech. Several accessory sulci have been described in this area, whose presence could modify the results of the automatic quantification of gray matter by popularly used software. This study aimed to assess the expression of accessory sulci in the frontoparietal operculum (FPO) and to evaluate their influence on the gray matter volume estimated by an automatic parcellation of cortical gyri and sulci. Methods: Brain MRI scans of 100 healthy adult volunteers were visually analyzed. The existence of the triangular and diagonal sulci, and the number of accessory sulci in the frontoparietal operculum, were assessed on T1 images. Also, the gray matter volume of gyri and sulci was quantified by an automatized parcellation method. Interhemispheric differences in accessory sulci were evaluated with Chi-square and Wilcoxon paired tests. The effects of the hemisphere, sex, age, total intracranial volume, and accessory sulci on morphometric variables were assessed by linear models. Results: These sulci were found in more than half of the subjects, mostly in the left hemisphere, and showed a significant effect on the gray matter content of the FPO. In particular, the volume of the inferior frontal sulcus, pars opercularis of the inferior frontal gyrus, horizontal ramus of the lateral sulcus, angular gyrus, and postcentral gyrus showed a significant influence on the presence of accessory sulci. Discussion: The prevalence of tertiary sulci in the FPO is high, although their meaning is not yet known. Therefore, they should be considered to reduce the risk of misclassifications of normal variation.

4.
Brain Struct Funct ; 227(2): 469-477, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34455496

ABSTRACT

Brain lateralization is a widespread phenomenon although its expression across primates is still controversial due to the reduced number of species analyzed and the disparity of methods used. To gain insight into the diversification of neuroanatomical asymmetries in non-human primates we analyze the endocasts, as a proxy of external brain morphology, of a large sample of New World monkeys and test the effect of brain size, home range and group sizes in the pattern and magnitude of shape asymmetry. Digital endocasts from 26 species were obtained from MicroCT scans and a set of 3D coordinates was digitized on endocast surfaces. Results indicate that Ateles, Brachyteles, Callicebus and Cacajao tend to have a rightward frontal and a leftward occipital lobe asymmetry, whereas Aotus, Callitrichinae and Cebinae have either the opposite pattern or no directional asymmetry. Such differences in the pattern of asymmetry were associated with group and home range sizes. Conversely, its magnitude was significantly associated with brain size, with larger-brained species showing higher inter-hemispheric differences. These findings support the hypothesis that reduction in inter-hemispheric connectivity in larger brains favors the lateralization and increases the structural asymmetries, whereas the patterns of shape asymmetry might be driven by socio-ecological differences among species.


Subject(s)
Brain , Platyrrhini , Animals , Brain/diagnostic imaging , Neuroanatomy , Occipital Lobe , Phylogeny , Platyrrhini/genetics
5.
Front Neurol ; 12: 613967, 2021.
Article in English | MEDLINE | ID: mdl-33692740

ABSTRACT

Introduction: Several methods offer free volumetry services for MR data that adequately quantify volume differences in the hippocampus and its subregions. These methods are frequently used to assist in clinical diagnosis of suspected hippocampal sclerosis in temporal lobe epilepsy. A strong association between severity of histopathological anomalies and hippocampal volumes was reported using MR volumetry with a higher diagnostic yield than visual examination alone. Interpretation of volumetry results is challenging due to inherent methodological differences and to the reported variability of hippocampal volume. Furthermore, normal morphometric differences are recognized in diverse populations that may need consideration. To address this concern, we highlighted procedural discrepancies including atlas definition and computation of total intracranial volume that may impact volumetry results. We aimed to quantify diagnostic performance and to propose reference values for hippocampal volume from two well-established techniques: FreeSurfer v.06 and volBrain-HIPS. Methods: Volumetry measures were calculated using clinical T1 MRI from a local population of 61 healthy controls and 57 epilepsy patients with confirmed unilateral hippocampal sclerosis. We further validated the results by a state-of-the-art machine learning classification algorithm (Random Forest) computing accuracy and feature relevance to distinguish between patients and controls. This validation process was performed using the FreeSurfer dataset alone, considering morphometric values not only from the hippocampus but also from additional non-hippocampal brain regions that could be potentially relevant for group classification. Mean reference values and 95% confidence intervals were calculated for left and right hippocampi along with hippocampal asymmetry degree to test diagnostic accuracy. Results: Both methods showed excellent classification performance (AUC:> 0.914) with noticeable differences in absolute (cm3) and normalized volumes. Hippocampal asymmetry was the most accurate discriminator from all estimates (AUC:1~0.97). Similar results were achieved in the validation test with an automatic classifier (AUC:>0.960), disclosing hippocampal structures as the most relevant features for group differentiation among other brain regions. Conclusion: We calculated reference volumetry values from two commonly used methods to accurately identify patients with temporal epilepsy and hippocampal sclerosis. Validation with an automatic classifier confirmed the principal role of the hippocampus and its subregions for diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...