Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
High Alt Med Biol ; 19(2): 149-155, 2018 06.
Article in English | MEDLINE | ID: mdl-29565678

ABSTRACT

Moraga, Fernando A., Giselle Miranda, Vasthi López, Carmen Vallejos, and Daniel Silva. Chronic intermittent hypobaric hypoxia (4600 M) attenuates pulmonary vasodilation induced by acetylcholine or sodium nitroprusside. High Alt Med Biol. 19:149-155, 2018. BACKGROUND: Previous studies performed in rats exposed to chronic intermittent hypobaric hypoxia (CIHH), at a simulated altitude of 4600 m, showed reduced nitric oxide (NO) production, increased arginase activity, and increased oxidative stress. However, studies on vascular function are scarce. Our aim was to measure plasma nitrate and nitrite (NOx) concentration and study pulmonary vascular function in rats exposed to CIHH in the presence of potassium chloride (KCl), acetylcholine (Ach), and sodium nitroprusside (SNP). METHODS: Thirty male Wistar rats were divided into two groups: A control group (normoxia (N), n = 10) and a CIHH group (2N × 2H × 30 days, n = 20). CIHH exposure was performed in a hypobaric chamber at 428 Torr (4600 m). Noninvasive systolic blood pressure (SBP), heart rate, and body weight (BW) were measured. Blood samples were obtained to measure NOx levels and hematocrit (Hct). CIHH animals that gained BW and presented a Hct <20% and maintained SBP were classified as tolerant, and animals that lost >30% of their BW, increased Hct and SBP >20% were classified as intolerant. Animals were sacrificed and small pulmonary arteries (SPA) were obtained to perform concentration-response curves to KCl, Ach, and SNP. RESULTS AND CONCLUSIONS: Intolerant rats (30%) had decreased NOx levels. SPA had a larger vasocontraction response to KCl and a lower dilation response to SNP in the SPA compared to tolerant and control animals. In addition, SPA had a lower dilatation response to Ach compared with the control. Together, these results show that CIHH alters endothelium-dependent vasodilation.


Subject(s)
Acetylcholine/pharmacology , Altitude Sickness/physiopathology , Altitude , Nitroprusside/pharmacology , Vasodilation/drug effects , Altitude Sickness/blood , Animals , Blood Pressure , Body Weight , Chronic Disease , Disease Models, Animal , Heart Rate , Hematocrit , Male , Nitrates/blood , Nitrites/blood , Potassium Chloride/pharmacology , Pulmonary Artery/drug effects , Pulmonary Artery/physiopathology , Rats , Rats, Wistar
2.
High Alt Med Biol ; 10(4): 373-81, 2009.
Article in English | MEDLINE | ID: mdl-20039818

ABSTRACT

The aim of this study was to analyze the activity and expression levels of arginase I and II and to monitor the cardiovascular and hematological responses in tolerant and intolerant rats exposed to chronic intermittent hypobaric hypoxia (CIHH). Male Wistar rats (age: 3.0 +/- 0.4 months, weight: 250 +/- 25 g; n = 30) were randomly divided into two groups: CIHH2 x 2 (2 days hypoxia, 2 days normoxia, n = 20) and NX (normoxia, n = 10). The hypoxia was simulated in a hypobaric chamber at 428 torr. Tolerance was determined according to a previous protocol. Arginase activity was measured in lung and heart tissues, and the expression levels were determined by a (RT-PCR) assay in lung tissue. Results showed that the intolerants rats had lower body weight, higher hematocrit (Hct) (74 +/- 4% vs. 61 +/- 2%, p < 0.05), higher values of systolic blood pressure (SBP) (183 +/- 3.7 mmHg vs. 147 +/- 5.4 mmHg, p < 0.05), and higher arginase activity. In addition, RT-PCR analysis from lung tissue showed an overexpression of arginase II in the intolerant group (p < 0.01). However, tolerants had similar values as the NX group (p = ns). Further, a correlation was found between arginase activity and SBP in the heart (r(2) = 0.596, p < 0.001). An upregulation of arginase type II could be pivotal in understanding the pathogenesis of systolic hypertension and probably other phenomena associated with intermittent hypobaric hypoxia. A schematic explanation of these relations is proposed.


Subject(s)
Acclimatization , Altitude , Arginase/metabolism , Hypertension/metabolism , Hypoxia/metabolism , Up-Regulation , Animals , Atmospheric Pressure , Blood Pressure , Body Weight , Heart Rate , Hematocrit , Hypertension/complications , Hypertension/physiopathology , Hypoxia/complications , Lung/metabolism , Male , Myocardium/metabolism , Nitrates/blood , Nitrites/blood , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...