Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(28): 18355-18367, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38952163

ABSTRACT

Ferroelectric materials display exotic polarization textures at the nanoscale that could be used to improve the energetic efficiency of electronic components. The vast majority of studies were conducted in two dimensions on thin films that can be further nanostructured, but very few studies address the situation of individual isolated nanocrystals (NCs) synthesized in solution, while such structures could have other fields of applications. In this work, we experimentally and theoretically studied the polarization texture of ferroelectric barium titanate (BaTiO3, BTO) NCs attached to a conductive substrate and surrounded by air. We synthesized NCs of well-defined quasicubic shape and 160 nm average size that conserve the tetragonal structure of BTO at room temperature. We then investigated the inverse piezoelectric properties of such pristine individual NCs by vector piezoresponse force microscopy (PFM), taking particular care to suppress electrostatic artifacts. In all of the NCs studied, we could not detect any vertical PFM signal, and the maps of the lateral response all displayed larger displacement amplitude on the edges with deformations converging toward the center. Using field phase simulations dedicated to ferroelectric nanostructures, we were able to predict the equilibrium polarization texture. These simulations revealed that the NC core is composed of 180° up and down domains defining the polar axis that rotate by 90° in the two facets orthogonal to this axis, eventually lying within these planes forming a layer of about 10 nm thickness mainly composed of 180° domains along an edge. From this polarization distribution, we predicted the lateral PFM response, which was revealed to be in very good qualitative agreement with the experimental observations. This work positions PFM as a relevant tool to evaluate the potential of complex ferroelectric nanostructures to be used as sensors.

2.
Nanoscale Adv ; 6(6): 1704-1719, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38482026

ABSTRACT

Perovskite nanocrystals have attracted much attention in the last ten years due to their different applications, especially in the photovoltaic domain and LED performance. In this large family of perovskite nanocrystals, CsPbBr3 nanocrystals are attractive nanomaterials because they are good candidates for obtaining green emissions and exploring new synthesis routes. In this context, controlling the nanometric scale's morphology, particularly the size and monodispersity, is fundamental for exploring their photophysical properties and final applications. Currently, the nanometric size of nanocrystals is ensured by the presence of oleic acid and oleylamine molecules, in using Hot Injection (HI) or ligand-assisted reprecipitation (LARP) methods. If oleic acid plays a fundamental role, oleylamine can be easily substituted by other amino molecules, opening the way for the functionalization of CsPbBr3 nanocrystals and the obtention of new hybrid perovskite nanocrystal families. In this article, we describe the synthesis, by soft chemistry, of a new family of hybrid organic-inorganic CsPbBr3 nanocrystals, functionalized by aryl-alkylamine (AAA) molecules, through the modified LARP method. We highlight the mechanism for cutting submicron crystals into nanocrystals, using aryl-alkylamine molecules like scissors. The impact of these amino molecules on the final nanocrystals leads to different nanocrystal morphologies (nanocubes, nanosheets, or nanorods) and structures (monoclinic, rhombohedral, or tetragonal). In addition, this modified LARP method highlights, under certain experimental conditions, an unexpected formation of PbO ribbons.

3.
Appl Opt ; 63(1): 30-41, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175002

ABSTRACT

Multilayer coated diffraction gratings are crucial components for extreme ultraviolet (EUV) applications such as spectroscopy or spectro-imaging. However, for high groove density, the smoothening of the grating surface profile with multilayer deposition remains a limitation that requires further investigation. In this paper, we report on the design, characterization, and modeling of 4000 lines/mm diffraction gratings coated with periodic and aperiodic Al/Mo/SiC multilayers for EUV radiation. Two types of gratings with different groove depths are compared. Multilayer coatings were designed using a genetic algorithm to maximize the first-order diffraction efficiency in the 17-21 and 19-23 nm wavelength ranges at normal incidence. Periodic and aperiodic multilayers with different numbers of layers were deposited by magnetron sputtering on the two types of fused silica gratings, and the grating groove profile evolution was measured by atomic force microscopy and cross-section transmission electron microscopy. The first-order diffraction efficiency was measured in the EUV at 5° incidence using monochromatic synchrotron radiation and modeled using the rigorous coupled-wave analysis method. The simulation models refined by using the Debye-Waller factor to account for the multilayer interfacial roughness show good agreement with experimental data. The results reported in this study will allow for designing efficient EUV multilayer gratings for high-resolution spectro-imaging instruments.

4.
Sci Rep ; 13(1): 15423, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723176

ABSTRACT

We describe here a new process for the synthesis of very high quality 2D Covalent Organic Frameworks (COFs), such a C2N and CN carbon nitrides. This process relies on the use of a metallic surface as both a reagent and a support for the coupling of small halogenated building blocks. The conditions of the assembly reaction are chosen so as to leave the inorganic salts by-products on the surface, to further confine the assembly reaction on the surface and increase the quality of the 2D layers. We found that under these conditions, the process directly returns few layers material. The structure/quality of these materials is demonstrated by extensive cross-characterizations at different scales, combining optical microscopy, Scanning Electron Microscopy (SEM)/Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS). The availability of such very large, high-quality layers of these materials opens interesting perspectives, for example in photochemistry and electronics (intrinsic transport properties, high gap substrate for graphene, etc...).

5.
Opt Express ; 30(21): 38319-38338, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258401

ABSTRACT

Al/Mo/SiC periodic and aperiodic multilayers were optimized and deposited on high groove density gratings to achieve broadband efficiency in the extreme ultraviolet (EUV). Grating efficiencies were measured by monochromatic synchrotron radiation under 5° and 45° incident angles in the wavelength ranges 17-25 nm and 22-31 nm, respectively. We study the influence of the number of deposited periods on the initial trapezoidal profile and the EUV diffraction efficiency. We propose models of periodic and aperiodic coatings based on a combination of characterizations and compare rigorous coupled-wave analysis (RCWA) simulations with experimental data. We demonstrate the possibility to select the optimal balance between peak efficiency and bandwidth by adjusting the number of periods in the case of periodic multilayer grating. We also report unprecedented broadband diffraction efficiency with an Al/Mo/SiC aperiodic multilayer grating.

6.
Chem Commun (Camb) ; 58(40): 5960-5963, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35475432

ABSTRACT

A new synthetic method for preparing highly calibrated CsPbBr3 nanocrystal perovskites is described and analyzed using high-resolution scanning transmission electron microscopy. This new method based on soft chemistry leads to the large-scale production of nanocrystals. Such monodisperse nanocrystals allow for the deposition of homogeneous films, which provides new opportunities for the next generation of optoelectronic devices.

7.
Langmuir ; 33(41): 11086-11093, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28950064

ABSTRACT

Al/CuO energetic structure are attractive materials due to their high thermal output and propensity to produce gas. They are widely used to bond components or as next generation of MEMS igniters. In such systems, the reaction process is largely dominated by the outward migration of oxygen atoms from the CuO matrix toward the aluminum layers, and many recent studies have already demonstrated that the interfacial nanolayer between the two reactive layers plays a major role in the material properties. Here we demonstrate that the ALD deposition of a thin ZnO layer on the CuO prior to Al deposition (by sputtering) leads to a substantial increase in the efficiency of the overall reaction. The CuO/ZnO/Al foils generate 98% of their theoretical enthalpy within a single reaction at 900 °C, whereas conventional ZnO-free CuO/Al foils produce only 78% of their theoretical enthalpy, distributed over two distinct reaction steps at 550 °C and 850 °C. Combining high-resolution transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry, we characterized the successive formation of a thin zinc aluminate (ZnAl2O4) and zinc oxide interfacial layers, which act as an effective barrier layer against oxygen diffusion at low temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...