Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Infect Dis ; 68: 44-49, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29410366

ABSTRACT

OBJECTIVE: To evaluate the diagnostic performance of TB-LAMP, a manual molecular tuberculosis (TB) detection method, and provide comparison to the Xpert MTB/RIF assay. METHODS: In a large multicentre study, two sputum samples were collected from participants with TB symptoms in reference laboratories in Peru, South Africa, Brazil, and Vietnam. Each sample was tested with TB-LAMP. The reference standard consisted of four direct smears, four cultures, and clinical and radiological findings. Individuals negative on conventional tests were followed up after 8 weeks. The Xpert MTB/RIF assay was performed on fresh or frozen samples as a molecular test comparison. RESULTS: A total of 1036 adults with suspected TB were enrolled. Among 375 culture-confirmed TB cases with 750 sputum samples, TB-LAMP detected 75.6% (95% confidence interval (CI) 71.8-79.4%), including 97.9% (95% CI 96.4-99.4%) of smear-positive TB samples and 46.6% (95% CI 40.6-52.7%) of smear-negative TB samples. Specificity in 477 culture-negative participants not treated for TB (954 sputum samples) was 98.7% (95% CI 97.9-99.6%). TB-LAMP test results were indeterminate in 0.3% of cases. CONCLUSIONS: TB-LAMP detects nearly all smear-positive and half of smear-negative TB cases and has a high specificity when performed in reference laboratories. Performance was similar to the Xpert MTB/RIF assay.


Subject(s)
Tuberculin Test , Tuberculosis/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Female , Follow-Up Studies , Humans , Male , Middle Aged , Peru , Sensitivity and Specificity , South Africa , Sputum/microbiology , Urban Population , Vietnam , Young Adult
2.
J Clin Microbiol ; 55(4): 1066-1073, 2017 04.
Article in English | MEDLINE | ID: mdl-28100602

ABSTRACT

The spread of multidrug-resistant (MDR) tuberculosis (TB) and extensively drug-resistant (XDR) TB hampers global efforts in the fight against tuberculosis. To enhance the development and evaluation of diagnostic tests quickly and efficiently, well-characterized strains and samples from drug-resistant tuberculosis patients are necessary. In this project, the Foundation for Innovative New Diagnostics (FIND) has focused on the collection, characterization, and storage of such well-characterized reference materials and making them available to researchers and developers. The collection is being conducted at multiple centers in Southeast Asia, South America, Eastern Europe, and soon the sub-Saharan Africa regions. Strains are characterized for their phenotypic resistances and MICs to first-line drugs (FLDs) and second-line drugs (SLDs) using the automated MGIT 960 system following validated procedures and WHO criteria. Analysis of resistance-associated mutations is done by whole-genome sequencing (WGS) using the Illumina NextSeq system. Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat analysis and WGS are used to determine strain lineages. All strains are maintained frozen at -80°C ± 10°C as distinct mother and daughter lots. All strains are extensively quality assured. The data presented here represent an analysis of the initial part of the collection. Currently, the bank contains 118 unique strains with extracted genomic DNA and matched sputum, serum, and plasma samples and will be expanded to a minimum of 1,000 unique strains over the next 3 years. Analysis of the current strains by phenotypic resistance testing shows 102 (86.4%), 10 (8.5%), and 6 (5.1%) MDR, XDR, and mono/poly resistant strains, respectively. Two of the strains are resistant to all 11 drugs that were phenotypically tested. WGS mutation analysis revealed FLD resistance-associated mutations in the rpoB, katG, inhA, embB, embA, and pncA genes; SLD resistance in the gyrA, gyrB, rrs, eis, and tlyA genes; and ethionamide resistance in the ethA genes. Most important lineages are represented in the bank, and further collections have been initiated to increase geographic and lineage diversity. The bank provides highly characterized and high-quality strains as a resource for researchers and developers in support of the development and evaluation of new diagnostics and drug resistance detection tools.


Subject(s)
Biological Specimen Banks , Drug Resistance, Bacterial , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Multidrug-Resistant/diagnosis , Humans , International Cooperation , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/microbiology
3.
BMC Infect Dis ; 16(1): 764, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-27993132

ABSTRACT

BACKGROUND: The Xpert® MTB/RIF (Xpert) assay is a rapid PCR-based assay for the detection of Mycobacterium tuberculosis complex DNA (MTBc) and mutations associated with rifampin resistance (RIF). An updated version introduced in 2011, the G4 Xpert, included modifications to probe B and updated analytic software. METHODS: An analytical study was performed to assess Xpert detection of mutations associated with rifampin resistance in rifampin-susceptible and -resistant isolates. A clinical study was performed in which specimens from US and non-US persons suspected of tuberculosis (TB) were tested to determine Xpert performance characteristics. All specimens underwent smear microscopy, mycobacterial culture, conventional drug-susceptibility testing and Xpert testing; DNA from isolates with discordant rifampin resistance results was sequenced. RESULTS: Among 191 laboratory-prepared isolates in the analytical study, Xpert sensitivity for detection of rifampin resistance associated mutations was 97.7% and specificity was 90.8%, which increased to 99.0% after DNA sequencing analysis of the discordant samples. Of the 1,096 subjects in the four clinical studies, 49% were from the US. Overall, Xpert detected MTBc in 439 of 468 culture-positive specimens for a sensitivity of 93.8% (95% confidence interval [CI]: 91.2%-95.7%) and did not detect MTBc in 620 of 628 culture-negative specimens for a specificity of 98.7% (95% CI: 97.5%-99.4%). Sensitivity was 99.7% among smear-positive cases, and 76.1% among smear-negative cases. Non-determinate MTBc detection and false-positive RIF resistance results were low (1.2 and 0.9%, respectively). CONCLUSIONS: The updated Xpert assay retained the high sensitivity and specificity of the previous assay versions and demonstrated low rates of non-determinate and RIF resistance false positive results.


Subject(s)
Antibiotics, Antitubercular , Drug Resistance, Bacterial/genetics , Mycobacterium tuberculosis/isolation & purification , Rifampin , Tuberculosis/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Biological Assay , Case-Control Studies , DNA, Bacterial/analysis , Developing Countries , False Positive Reactions , Female , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Mutation , Mycobacterium tuberculosis/genetics , Polymerase Chain Reaction/methods , Prevalence , Retrospective Studies , Sensitivity and Specificity , Tuberculosis/epidemiology , Tuberculosis/microbiology , United States/epidemiology , Young Adult
4.
J Clin Microbiol ; 54(6): 1624-1630, 2016 06.
Article in English | MEDLINE | ID: mdl-27076658

ABSTRACT

Less than 30% of multidrug-resistant tuberculosis (MDR-TB) patients are currently diagnosed, due to laboratory constraints. Molecular diagnostics enable rapid and simplified diagnosis. Newer-version line probe assays have not been evaluated against the WHO-endorsed Hain GenoType MTBDRplus (referred to as Hain version 1 [V1]) for the rapid detection of rifampin (RIF) and isoniazid (INH) resistance. A two-phase noninferiority study was conducted in two supranational reference laboratories to allow head-to-head comparisons of two new tests, Hain Genotype MTBDRplus version 2 (referred to as Hain version 2 [V2]) and Nipro NTM+MDRTB detection kit 2 (referred to as Nipro), to Hain V1. In phase 1, the results for 379 test strains were compared to a composite reference standard that used phenotypic drug susceptibility testing (DST) and targeted sequencing. In phase 2, the results for 644 sputum samples were compared to a phenotypic DST reference standard alone. Using a challenging set of strains in phase 1, the values for sensitivity and specificity for Hain V1, Hain V2, and Nipro, respectively, were 90.3%/98.5%, 90.3%/98.5%, and 92.0%/98.5% for RIF resistance detection and 89.1%/99.4%, 89.1%/99.4%, and 89.6%/100.0% for INH resistance detection. Testing of sputa in phase 2 yielded values for sensitivity and specificity of 97.1%/97.1%, 98.2%/97.8%, and 96.5%/97.5% for RIF and 94.4%/96.4%, 95.4%/98.8%, and 94.9%/97.6% for INH. Overall, the rates of indeterminate results were low, but there was a higher rate of indeterminate results with Nipro than with Hain V1 and V2 in samples with low smear grades. Noninferiority of Hain V2 and Nipro to Hain V1 was demonstrated for RIF and INH resistance detection in isolates and sputum specimens. These results serve as evidence for WHO policy recommendations on the use of line probe assays, including the Hain V2 and Nipro assays, for MDR-TB detection.


Subject(s)
Drug Resistance, Bacterial , Genotyping Techniques/methods , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/diagnosis , Antitubercular Agents/pharmacology , Cross-Sectional Studies , Humans , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Rifampin/pharmacology , Sensitivity and Specificity
5.
J Clin Microbiol ; 54(4): 1051-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26865685

ABSTRACT

The Epistem Genedrive assay rapidly detects the Mycobacterium tuberculosis omplex from sputum and is currently available for clinical use. However, the analytical and clinical performance of this test has not been fully evaluated. The analytical limit of detection (LOD) of the Genedrive PCR amplification was tested with genomic DNA; the performance of the complete (sample processing plus amplification) system was tested by spiking M. tuberculosismc(2)6030 cells into distilled water andM. tuberculosis-negative sputum. Specificity was tested using common respiratory pathogens and nontuberculosis mycobacteria. A clinical evaluation enrolled adults with suspected pulmonary tuberculosis, obtained three sputum samples from each participant, and compared the accuracy of the Gene drive to that of the Xpert MTB/RIF assay using M. tuberculosiscultures as the reference standard. The Genedrive assay had an LOD of 1 pg/µl (100 genomic DNA copies/reaction). The LODs of the system were 2.5 × 10(4)CFU/ml and 2.5 × 10(5)CFU/ml for cells spiked into water and sputum, respectively. False-positiverpoBprobe signals were observed in 3/32 (9.4%) of the negative controls and also in few samples containing Mycobacterium abscessus,Mycobacterium gordonae, o rMycobacterium thermoresistibile In the clinical study, among 336 analyzed participants, the overall sensitivities for the tuberculosis case detection of Gene drive, Xpert, and smear microscopy were 45.4% (95% confidence interval [CI], 35.2% to 55.8%), 91.8% (95% CI, 84.4% to 96.4%), and 77.3% (95% CI, 67.7% to 85.2%), respectively. The sensitivities of Gene drive and Xpert for the detection of smear-microscopy-negative tuberculosis were 0% (95% CI, 0% to 15.4%) and 68.2% (95% CI, 45.1% to 86.1%), respectively. The Genedrive assay did not meet performance standards recommended by the World Health Organization for a smear microscopy replacement tuberculosis test. Epistem is working on modifications to improve the assay.


Subject(s)
Molecular Diagnostic Techniques/methods , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/diagnosis , Adult , Cross-Sectional Studies , False Positive Reactions , Female , Humans , Male , Middle Aged , Mycobacterium tuberculosis/genetics , Sensitivity and Specificity , Sputum/microbiology
6.
PLoS One ; 10(12): e0144088, 2015.
Article in English | MEDLINE | ID: mdl-26633829

ABSTRACT

Globally, tuberculosis is slowly declining each year and it is estimated that 37 million lives were saved between 2000 and 2013 through effective diagnosis and treatment. Currently, diagnosis relies on demonstration of the bacteria, Mycobacterium tuberculosis (Mtb), in clinical specimens by serial sputum microscopy, culture and molecular testing. Commercial immunoassay lateral flow kits developed to detect Mtb lipoglycan lipoarabinomannan (LAM) in urine as a marker of active TB exhibit poor sensitivity, especially in immunocompetent individuals, perhaps due to low abundance of the analyte. Our present study was designed to develop methods to validate the presence of LAM in a quantitative fashion in human urine samples obtained from culture-confirmed TB patients. Herein we describe, a consolidated approach for isolating LAM from the urine and quantifying D-arabinose as a proxy for LAM, using Gas Chromatography/Mass Spectrometry. 298 urine samples obtained from a repository were rigorously analyzed and shown to contain varying amounts of LAM-equivalent ranging between ~10-40 ng/mL. To further substantiate that D-arabinose detected in the samples originated from LAM, tuberculostearic acid, the unique 10-methyloctadecanoic acid present at the phosphatidylinositol end of LAM was also analyzed in a set of samples and found to be present confirming that the D-arabinose was indeed derived from LAM. Among the 144 samples from culture-negative TB suspects, 30 showed presence of D-arabinose suggesting another source of the analyte, such as disseminated TB or from non-tuberculosis mycobacterium. Our work validates that LAM is present in the urine samples of culture-positive patients in small but readily detectable amounts. The study further substantiates LAM in urine as a powerful biomarker for active tuberculosis.


Subject(s)
Arabinose/urine , Lipopolysaccharides/urine , Tuberculosis/diagnosis , Enzyme-Linked Immunosorbent Assay , Gas Chromatography-Mass Spectrometry , Humans , Mycobacterium tuberculosis/isolation & purification , Sensitivity and Specificity , Tuberculosis/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...