Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37791855

ABSTRACT

Laser-driven proton accelerators are relevant candidates for many applications such as material science or medicine. Today, there are multi-hundred-TW table-top laser systems that can generate relativistic peak intensities >1018 W/cm2 and routinely reach proton energies in the MeV range. However, for most desired applications, there is still a need to optimize the quality and stability of the laser-generated proton beam. In this work, we developed a 0.625 Hz high repetition-rate setup in which a laser with 2.5% RMS energy stability is irradiating a solid target with an intensity of 1019 to 1020 W/cm2 to explore proton energy and yield variations, both with high shot statistics (up to about 400 laser shots) and using different interaction targets. Investigating the above-mentioned parameters is important for applications that rely on specific parts of the proton spectrum or a high ion flux produced over quick multi-shot irradiation. We demonstrate that the use of a stable "multi-shot mode" allows improving applications, e.g., in the detection of trace elements using laser-driven particle-induced x-ray emission.

2.
Opt Express ; 31(12): 19319-19335, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381349

ABSTRACT

A comparative study of three different tight-focusing schemes for high-power lasers is performed numerically. Using the Stratton-Chu formulation, the electromagnetic field in the vicinity of the focus is evaluated for a short-pulse laser beam incident upon an on-axis high numerical aperture parabola (HNAP), an off-axis parabola (OAP), and a transmission parabola (TP). Linearly- and radially-polarized incident beams are considered. It is demonstrated that while all the focusing configurations yield intensities above 1023 W/cm2 for a 1 PW incident beam, the nature of the focused field can be drastically modified. In particular, it is shown that the TP, with its focal point behind the parabola, actually converts an incoming linearly-polarized beam into an m = 2 vector beam. The strengths and weaknesses of each configuration are discussed in the context of future laser-matter interaction experiments. Finally, a generalization of NA calculations up to 4π-illumination is proposed through the solid angle formulation, providing a universal way to compare light cones from any kind of optics.

3.
Sci Rep ; 11(1): 9998, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33976237

ABSTRACT

Particle and radiation sources are widely employed in manifold applications. In the last decades, the upcoming of versatile, energetic, high-brilliance laser-based sources, as produced by intense laser-matter interactions, has introduced utilization of these sources in diverse areas, given their potential to complement or even outperform existing techniques. In this paper, we show that the interaction of an intense laser with a solid target produces a versatile, non-destructive, fast analysis technique that allows to switch from laser-driven PIXE (Particle-Induced X-ray Emission) to laser-driven XRF (X-ray Fluorescence) within single laser shots, by simply changing the atomic number of the interaction target. The combination of both processes improves the retrieval of constituents in materials and allows for volumetric analysis up to tens of microns and on cm2 large areas up to a detection threshold of ppms. This opens the route for a versatile, non-destructive, and fast combined analysis technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...